

The Complete log4j Manual

author’s manuscript, November 20th, 2002

Ceki Gülcü

This manual applies to log4j version 1.2 and later.

The complete log4j Manual
by Ceki Gülcü

Copyright © 2000-2002 Ceki Gülcü, All rights reserved.

The illustration of the Dromaeosaur (a feathered Dinosaur) on the cover is copyrighted by Mick Ellison.
Reproduced with permission.

You are authorized to download one copy of the electronic book entitled "The complete log4j Manual"
and associated software written by Ceki Gülcü, hereafter referred to as the Work. The Author grants you
a nonexclusive, nontransferable license to use this Work according to the terms and conditions herein.
This License permits you to install the Work for your personal use only.

You may not (i) modify or translate all or part of the Work (ii) create derivative works of the
Work (iii) sublicense, publish, loan, lease, rent, distribute, sell, timeshare, or transfer all or part of
the Work or any rights granted hereunder to any other person or entity; (ii) duplicate the Work,
except for a single backup or archival copy; (iii) alter or remove any proprietary notices (includ-
ing copyright notices), labels or marks appearing in the Work.

The Work is owned by its author and is protected by international copyright and other intellectual prop-
erty laws. The Author reserves all rights in the Work not expressly granted herein. This license and your
right to use the Work terminate automatically if you violate any part of this Agreement. In the event of
termination, you must destroy the original and all copies of the Work.

THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO
EVENT SHALL CEKI GÜLCÜ OR ANY OTHER CONTRIBUTOR BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE WORK OR THE USE
OR OTHER DEALINGS IN THE WORK.

THE WORK COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES
WILL BE INCORPORATED IN NEW EDITIONS OF THE WORK. THE AUTHORS MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PUBLICATION(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THIS WORK AT ANY TIME.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsys-
tems, Inc., in the United States and other countries.

Table of Contents
TABLE OF CONTENTS ... I

PREFACE... IV
CONTENTS OF THIS BOOK.. IV
CONVENTIONS USED IN THIS BOOK... V
COMMENTS AND QUESTIONS... VI
ACKNOWLEDGMENTS.. VI

1. INTRODUCTION... 1
INSTALLING.. 2
RUNNING THE EXAMPLES... 2
FIRST BABY STEP ... 3
RECIPE FOR USING LOG4J IN YOUR APPLICATIONS.. 4

2. LOG4J ARCHITECTURE .. 6
LOGGER HIERARCHY .. 6
LOGGER CREATION AND RETRIEVAL .. 8
LEVELS... 9
LOGGER-LEVEL FILTER .. 13
HIERARCHY-WIDE THRESHOLD FILTER.. 14
APPENDERS .. 16
LAYOUTS.. 19
OBJECT RENDERING ... 19
A PEEK UNDER THE HOOD.. 20
LOGGINGEVENT CLASS .. 22
PERFORMANCE ... 23

3. CONFIGURATION SCRIPTS.. 28
SIMPLEST APPROACH USING BASICCONFIGURATOR... 28
SYNTAX OF CONFIGURATION FILES IN PROPERTIES FORMAT .. 32
SETTING THE HIERARCHY-WIDE THRESHOLD ... 37
SETTING THE LEVEL OF A LOGGER.. 38
SETTING THE THRESHOLD OF AN APPENDER .. 41
MULTIPLE APPENDERS.. 42
CONFIGURATION FILES IN XML ... 45
SYNTAX OF XML SCRIPTS.. 46
SETTING A HIERARCHY-WIDE THRESHOLD (XML)... 53
SETTING THE LEVEL OF A LOGGER (XML) ... 54
SETTING THE THRESHOLD OF AN APPENDER (XML).. 57
MULTIPLE APPENDERS (XML)... 59
RELOADING CONFIGURATION FILES ... 62
EMBEDDED LIBRARIES USING LOG4J.. 64

ii TABLE OF CONTENTS

DEFAULT INITIALIZATION .. 66
LOG4J INITIALIZATION IN WEB CONTAINERS .. 69
DEFAULT INITIALIZATION UNDER TOMCAT ... 70
INITIALIZATION SERVLET ... 71
LOG4J INITIALIZATION IN APPLICATION SERVERS ... 72

4. APPENDERS... 75
APPENDERSKELETON ... 76
WRITERAPPENDER ... 79
CONSOLEAPPENDER... 82
FILEAPPENDER... 83
ROLLINGFILEAPPENDER .. 84
DAILYROLLINGFILEAPPENDER.. 86
SOCKETAPPENDER ... 88
JMSAPPENDER... 91
SMTPAPPENDER.. 101
ASYNCAPPENDER... 105
HANDLING ERRORS .. 108
WRITING YOUR OWN APPENDER .. 110

5. LAYOUT.. 113
WRITING YOUR OWN LAYOUT.. 113
PATTERNLAYOUT... 116
XMLLAYOUT... 120
HTMLLAYOUT .. 121

6. CUSTOM FILTERS ... 123
WRITING YOUR OWN FILTER... 126

7. DIAGNOSTIC CONTEXTS.. 128
MAPPED DIAGNOSTIC CONTEXTS .. 128
NESTED DIAGNOSTIC CONTEXTS ... 135

8. EXTENDING LOG4J... 138
WRITING YOUR OWN LEVELS ... 139
WRITING YOUR OWN LOGGER CLASS ... 143
WRAPPING THE LOGGER CLASS.. 144
THE WIDER CONTEXT ... 153

9. CHANGES ... 163
BETWEEN LOG4J VERSION 1.1.X AND 1.2 ... 163
LOGGER REPLACES CATEGORY .. 163
COMPATIBILITY ISSUES WITH CATEGORY SUB-CLASSES .. 164
LEVEL REPLACES PRIORITY.. 164

10. FREQUENTLY ASKED QUESTIONS ... 166

TABLE OF CONTENTS iii

11. TROUBLE SHOOTING GUIDE.. 170

12. APACHE SOFTWARE LICENSE... 175

13. GLOSSARY .. 177

14. INDEX.. 178

Preface
Writing a book is a little more difficult than writing a
technical paper, but writing software is a lot more diffi-
cult than writing a book.

Donald Knuth, “All Questions Answered,” October 5, 2001

Have you ever witnessed a system failure and spent hours trying to reproduce it? In-
frequently occurring bugs are treacherous and cost tremendously in terms of time,
money and morale. With enough contextual information, most1 bugs take only min-
utes to fix. Identifying the bug is the hard part.

Ideally, a well-thought out battery of test cases will catch bugs early in the develop-
ment cycle. However, it is plainly impossible to test everything no matter how much
work you put into it, in all but select few, usually very small applications. Logging
equips the developer with detailed context on application failures. On the other hand,
testing provides quality assurance and confidence in the application. Logging and
testing should not be confused. The two are complementary. The larger your applica-
tion the more testing and the more logging you will need to do. Just testing will not
suffice; just logging will certainly not. When logging is wisely used, it can prove to
be an essential tool.

Contents of this Book
This manual describes the log4j API in considerable detail, including its features and
design rationale. It is intended for developers already familiar with the Java lan-
guage but new to log4j as much as for experienced log4j users. With the aid of intro-
ductory material and the examples, new users should quickly come up to speed. Sea-
soned log4j users will also find fresh material not discussed anywhere else. Ad-
vanced topics are also covered in detail so that the reader can harness the full power
of log4j.

Chapter 1 gives a gentle introduction to log4j. Chapter 2 introduces the basic log4j
concepts as well as the overall log4j architecture. Configuration scripts, first in prop-
erties format and then XML format, are presented in Chapter 3. These first three
chapters cover the basic features of log4j. Chapters 4, 5, and 6 discuss log4j compo-

1 Most bugs are shallow but a rare few require architectural changes.

CONVENTIONS USED IN THIS BOOK v

nents, namely Appenders, Layouts and Filters in considerable depth. Advanced top-
ics such as diagnostic contexts and the default initialization procedure are deferred to
later chapters.

The reader is highly encouraged to frequently consult the log4j javadoc documenta-
tion shipped with log4j. This documentation is also available online at:

 http://jakarta.apache.org/log4j/docs/api/index.html.

Conventions Used In This Book
Italics is used for:

• Pathnames, filenames, and application names

• New terms, usually where they are defined

• Internet addresses, such as email addresses, domain names and URLs

Bold is used for:

• Extra emphasis, especially in configuration files.

Constant Width is used for:

• All Java code listings

• Command lines and options that should be typed verbatim on the screen

• Anything that appears literally in a Java program, including constants, class
names, interface names, method names, and variables.

Constant Width Italic is used for:

• Replaceable elements in configuration files

• Attribute names in a XML configuration file

Constant Width Bold is used for:

• System properties

Tunga is used for:

vi CHAPTER 1: INTRODUCTION

• Properties or options of log4j components (e.g. appenders)

Comments and Questions
Although I have tried my best, this book undoubtedly contains omissions, inaccura-
cies and mistakes. You can help me improve it by sending your suggestions to

log4j-user@jakarta.apache.org

This is an open mailing list dedicated to log4j related topics. Reporting errors, typos,
misleading or unclear statements is highly appreciated.

As log4j continues to grow and improve, so will this manual. Future editions will
strive to track and document important new log4j features. By buying this manual,
you are not only acquiring the most complete log4j documentation but also sustain-
ing the log4j development effort. Thank you.

Acknowledgments
My gratitude goes to Dr. N. Asokan for reviewing an earlier manuscript of this man-
ual. He is also one of the originators of the hierarchical logger concept along with Dr.
Michael Steiner. I am indebted to Nelson Minar, of JXTA fame, for encouraging me
to write the short log4j manual that in time became this book. Many readers have
reported errors helping to improve the quality of this book. I thank them sincerely.

The quality of the project benefited tremendously from a less known Jakarta project
called Gump (http://jakarta.apache.org/gump). When the Logger class was first
introduced it was a super-class of Category. This caused a rather subtle and unpre-
dictable incompatibility bug that was detected by Gump in about 24 hours. Nicholas
Wolff later suggested a far more reliable migration strategy. Without Gump, it would
have taken us weeks or even months to detect the problem, at which time it would
have been too late to fix it. In short, without Gump, log4j could not possibly offer the
same guarantees of backward compatibility. Life is like a box of chocolates, you
never know what you are going to get.

Log4j is the result of a collective effort. My special thanks go to all the authors who
have contributed to the project. Without exception, the best features in the package
have all originated in the log4j community. Log4j became publicly available in April
1999. Something amazing and unique happened shortly afterwards: patches started to
make their appearance. Comments and code began flowing in from all corners of the
world. I can hardly describe the exhilaration felt when receiving an ingenious patch,
especially if it arrives just a few hours after a new release.

ACKNOWLEDGMENTS vii

The contributors to the log4j project are too numerous to fully list here. However,
contributions from fellow developers, Oliver Burn, James P. Cakalic, Paul Glezen,
Anders Kristensen, Jon Skeet, Kevin Steppe, Chris Taylor, Mark Womack, stand out
particularly. I could not thank them enough. I am grateful to Costin Manolache of
Tomcat fame for allowing me to include some of his code.

Log4j owes its success to its active user base. In fact, the contents of this manual it-
self were mostly inspired from questions and comments asked on the log4j mailing
lists. Hopefully, many of those questions will be answered in this manual.

1.Introduction

The morale effects are startling. Enthusiasm jumps when there is a running
system, even a simple one. Efforts redouble when the first picture from a
new graphics software system appears on the screen, even if it is only a rec-
tangle. One always has, at every stage in the process, a working system. I
find that teams can grow much more complex entities in four months than
they can build.

Frederic P. Brooks, Jr., The Mythical Man-Month

Almost every large application includes its own logging or tracing API. In compli-
ance with this rule, the E.U. SEMPER project decided to write its own tracing API.
This was in early 1996. After countless enhancements, several incarnations and much
work that API evolved to become log4j, a popular logging package for Java. The
package is distributed under the Apache Software License, a full-fledged open source
license certified by the open source initiative (http://www.opensource.org). The latest
log4j version, including full-source code, class files and documentation can be found
at

http://jakarta.apache.org/log4j

Log4j has been ported by independent authors to C, C++, Python, Ruby, Eiffel and
the much maligned C#.

Inserting log statements into code is a low-tech debugging method. It may also be the
only way because debuggers are not always available or applicable. This is usually
the case for multithreaded applications and distributed applications at large. Experi-
ence indicates that logging is an important component in the development cycle. It
offers several advantages. It can provide precise context about an execution of the
application. Once inserted into the code, the generation of logging output is auto-
matic. Moreover, log output can be made persistent so it can be studied later. In addi-
tion to its use in the development cycle, a sufficiently rich logging package can also
be viewed as an auditing tool.

2 CHAPTER 1: INTRODUCTION

As Brian W. Kernigan and Rob Pike put it in their excellent book “The Practice of
Programming”

As personal choice, we tend not to use debuggers beyond getting a stack trace
or the value of a variable or two. One reason is that it is easy to get lost in de-
tails of complicated data structures and control flow; we find stepping through
a program less productive than thinking harder and adding output statements
and self-checking code at critical places. Clicking over statements takes longer
than scanning the output of judiciously placed displays. It takes less time to
decide where to put print statements than to single-step to the critical section
of code, even assuming we know where that is. More important, debugging
statements stay with the program; debugging sessions are transient.

Logging does have its drawbacks. It can slow down an application. If too verbose, it
can cause scrolling blindness. To alleviate these concerns, log4j is designed to be fast
and flexible. Since logging is rarely the main focus of an application, log4j API
strives to be simple to understand and use.

Installing
The latest version of log4j can be downloaded from

http://jakarta.apache.org/log4j/docs/download.html

Releases are available in two formats: zip and tar.gz. After unpacking the distribu-
tion, you should see the file LOG4J_HOME/dist/lib/log4j-VERSION.jar where
LOG4J_HOME is the directory where you unpacked the log4j distribution and VER-
SION is the version of the log4j distribution you downloaded. To start using log4j
simply add this jar file to your CLASSPATH.

Running the Examples
This book comes with various examples for hands-on experience. The source for
code for the examples are available under the MANUAL_HOME/examples/ directory,
where MANUAL_HOME is the directory where you unpacked this manual. For your
convenience compiled classes are available under the MAN-
UAL_HOME/examples/classes/ directory. In order to compile execute the examples,
you must have the log4j-VERSION.jar as well as the MAN-
UAL_HOME/examples/classes directory in your CLASSPATH. Note that some ex-
amples using the DOMConfigurator require the presence of a JAXP compatible
parser.

FIRST BABY STEP 3

If you wish to compile the examples, change the current directory to MAN-
UAL_HOME/examples/ and invoke a recent version of jakarta-ant, as appropriate for
your environment. Note that apart from jakarta-ant, all required libraries are included
under the lib/ directory.

First Baby Step
After you have added log4j-VERSION.jar and MANUAL_HOME/examples/classes to
your CLASSPATH, you can test a small program that uses log4j.

package chapter1;
import org.apache.log4j.Logger;

public class HelloWorld1 {
 static Logger logger = Logger.getLogger("chapter1.HelloWorld1");

 static public void main(String[] args) {
 logger.debug("Hello world.");
 }
}

HelloWorld1 class is defined to be in the chapter1 package. It starts by importing
the org.apache.log4j.Logger class. It also defines a static final variable, logger,
of type Logger. The logger variable is initialized to the value returned by Log-
ger.getLogger("chapter1.HelloWorld1"). I will shortly explain what log-
gers are and the reasons for the "chapter1.HelloWorld1" string parameter. For the
time being, I request your patience.

Within the main method, we invoke the debug method of the logger object with the
string "Hello World.". Put differently, the main method contains a single logging
statement of level debug containing the message "Hello World.".

You may wish to compile the file examples/chapter1/HelloWorld1.java. Note that as
a convenience class files are already shipped with this manual.

Try to run HelloWorld1 as follows:

java chapter1.HelloWorld1

This will not produce any logging output but instead the following warning.

log4j:WARN No appenders could be found for logger (chapter1.HelloWorld1).
log4j:WARN Please initialize the log4j system properly.

Log4j is complaining because we have not configured it just yet. There are many dif-
ferent ways for configuring log4j as you shall discover in Chapter 3. The simplest

4 CHAPTER 1: INTRODUCTION

(and least flexible) way is by calling the BasicConfigurator.configure()
method. Here is our second and more successful attempt.

package chapter1;
import org.apache.log4j.Logger;
import org.apache.log4j.BasicConfigurator;

public class HelloWorld2 {
 static Logger logger = Logger.getLogger("chapter1.HelloWorld2");

 static public void main(String[] args) {
 BasicConfigurator.configure();
 logger.debug("Hello world.");
 }
}

Running this example will produce the following output on the console.

10 [main] DEBUG chapter1.HelloWorld2 - Hello world.

The output contains relative time, that is, the number of milliseconds that elapsed
since the start of the program until the invocation of the logging request2, the name of
the invoking thread between brackets, the level of the request, the logger name, and
finally the message. As you can see, incorporating log4j into your application is
rather easy. The required steps remain essentially the same, even in large applica-
tions.

Recipe for using log4j in your applications
Here are the steps one usually takes in order to use log4j in one’s applications.

1. Configure log4j for your environment. Log4j offers many sophisticated
means of configuration, BasicConfigurator.configure() being the
simplest but also the least flexible. Chapter 3 is dedicated to the topic of
log4j configuration.

2 More precisely, relative time is the elapsed time in milliseconds since loading of the Log-
gingEvent class by the JVM until the invocation of the logging request The Log-
gingEvent class is loaded into memory when the first logging request is made. Thus, the
relative time of the first logging message is usually zero although it can also be a small posi-
tive integer.

RECIPE FOR USING LOG4J IN YOUR APPLICATIONS 5

NOTE Log4j normally needs to be configured only once. Some new users try
to configure log4j in each and every class. This is very inefficient and
just plain wrong.

2. In every class where you wish to perform logging, retrieve a Logger object
by invoking the Logger.getLogger method and passing it a String,
commonly the fully qualified name of the containing class. This logger ob-
ject is usually declared as static final.

There is a variant of the Logger.getLogger method that takes a Class
object as argument instead of a String. It is intended as a syntactic sugar.
For some class X in package com.wombat, the following three expressions
are equivalent:

Logger.getLogger("com.wombat.X"); // String variant
Logger.getLogger(X.class.getName()); // another String variant
Logger.getLogger(X.class); // convenient Class variant

3. Use this logger instance by invoking its printing methods, namely the de-
bug(), info(), warn(), error() and fatal() methods or the more ge-
neric log() method. This will produce logging output on selected devices.

Before delving into the details of log4j's architecture in the next chapter, it is a good
idea for the reader to try out the examples in this introductory chapter. As Fredic O.
Brooks observes in this classical work “The Mythical Man-Month”, donning a belt of
success, however modest, has extraordinarily positive effects on spirits.

2.Log4j Architecture

All true classification is genealogical.
Charles Darwin, The Origin of Species

The previous chapter presented a very simple usage case for log4j. This chapter dis-
cusses the log4j architecture and the rules governing its components. Log4j has three
main components: loggers, appenders and layouts. These three types of components
work together to enable developers to log messages according to their level and to
control the format of log messages as well as their output destination.

The reader familiar with the java.util.logging API introduced in JDK 1.4, will
recognize that log4j's architecture is very similar although log4j offers much more
functionality. Log4j requires JDK 1.1 whereas java.util.logging will only run
on JDK 1.4. Most of the concepts outlined in this document are reproduced with little
variation in java.util.logging albeit with somewhat different names. In case
you had any doubts regarding log4j’s lineage, the present log4j architecture dates
back to early 1999, JDK 1.4 logging was not even a JSR back then.

Logger hierarchy
The first and foremost advantage of any logging API over plain Sys-
tem.out.println statements resides in its ability to disable certain log statements
while allowing others to print unhindered. This capability assumes that the logging
space, that is, the space of all possible logging statements, is categorized according to
some developer-chosen criteria.

This observation had previously led us to choose category as the central concept of
the package. However, since log4j version 1.2, Logger class has replaced the Cate-
gory class. For those familiar with earlier versions of log4j, the Logger class can be
considered as a mere alias to the category class.

LOGGER HIERARCHY 7

Loggers are named entities. Logger names are case-sensitive and follow the Named
Hierarchy Rule:

 Named Hierarchy Rule

 A logger is said to be an ancestor of another logger if its name followed by
a dot is a prefix of the descendant logger name. A logger which is an im-
mediate ancestor of a descendant is said to be a parent logger and the im-
mediate descendant is said to be a child logger.

For example, the logger named "org.gopher" is a parent of the logger named
"org.gopher.Tail". Similarly, "java" is a parent of "java.util" and an ancestor of
"java.util.Vector". This naming scheme should be familiar to most developers.

The root logger resides at the top of the logger hierarchy. It is exceptional in three
ways:

• it always exists,

• its level cannot be set to null,

• it cannot be retrieved by name.

Invoking the class static Logger.getRootLogger method retrieves it. All other
loggers are instantiated and retrieved with the class static Logger.getLogger
method. This method takes the name of the desired logger as a parameter. Some of
the most frequently used methods of the Logger class are listed below.

8 CHAPTER 2: LOG4J ARCHITECTURE

Logger creation and retrieval
Each and every logger is tightly bound to the hierarchy that creates it. As mentioned
previously, all non-root loggers are instantiated and retrieved with the class static
Logger.getLogger3 method that takes either a String or a Class argument. If
the logger does not exist it will be automatically created.

3 This method actually delegates its work to the appropriate logger repository. In other words,
it is a repository that takes care of the creation and retrieval of logger instances. Log4j comes
with a particular type of repository, the hierarchy that arranges loggers according to the
named-hierarchy rule. The only type of repository encountered in practice is the hierarchy. As
such, unless specified otherwise, I will use the terms “hierarchy” and “repository” inter-
changeably in the remainder of this manual. The logger repository can be set by a main appli-
cation such as a J2EE Application Server or a Servlet Container. The logger repository is a
very advanced concept. Normally, most users neither care about nor control the logger reposi-
tory they use. Chapter 8 discusses reasons for using multiple repositories. In many cases only
the default hierarchy is used. At this stage you should just ignore the possibility of using mul-
tiple repositories and just assume that you are using the default repository, a.k.a. the default
hierarchy.

package org.apache.log4j;

public class Logger {

 // Logger creation & retrieval methods:
 public static Logger getRootLogger();
 public static Logger getLogger(String name);

 // printing methods:
 public void debug(Object message);
 public void info(Object message);
 public void warn(Object message);
 public void error(Object message);
 public void fatal(Object message);

 // printing methods for logging exceptions:
 public void debug(Object message, Throwable t);
 public void info(Object message, Throwable t);
 public void warn(Object message, Throwable t);
 public void error(Object message, Throwable t);
 public void fatal(Object message, Throwable t);

 // generic printing method:
 public void log(Level p, Object message);
}

LEVELS 9

One of the basic properties of the log4j framework is that calling the Log-
ger.getLogger method with the same name will always return a reference to the
exact same logger object. For example, in the following two statements

Logger x = Logger.getLogger("wombat");
Logger y = Logger.getLogger("wombat");

x and y refer to exactly the same logger object. It is thus possible to configure a log-
ger and then to retrieve the same instance somewhere else in the code without pass-
ing around references. In contrast to biological parenthood, where ancestors always
precede their descendants, log4j loggers can be created and configured in any order.
In particular, an ancestor logger will find and link to its descendants even if it is in-
stantiated after them.

Configuration of the log4j environment is typically done at application initialization.
The preferred way is by reading a configuration file. This approach will be discussed
in Chapter 3.

Log4j makes it easy to name loggers by software component. This can be accom-
plished by statically instantiating a logger in each class, with the logger name equal
to the fully qualified name of the class. This is a useful and straightforward method
of defining loggers. As the log output can be easily configured to bear the name of
the generating logger, this naming strategy makes it easy to identify the origin of a
log message. However, this is only one possible, albeit common, strategy for naming
loggers. Log4j does not impose any restriction on the name of loggers. The user is
free to name loggers as she wishes. Nevertheless, naming loggers after the class
where they are located seems to be the best strategy known so far.

 Levels
Logging requests are made by invoking one of the printing methods of a logger in-
stance. These printing methods, namely debug(), info(), warn(), error(), fa-
tal() and log(), are member methods of the Logger class. Each of these methods
except the more generic log() method corresponds to a built-in level. Levels4 are
closely related to the importance of the log request as judged by the developer. The

4 In previous versions of log4j, we used the term priority instead of level. Consider the two
terms as synonyms. I consider the term priority to be more descriptive, but at the time of the
change it seemed more important to be aligned with “official” Java terminology. With hind-
sight, I can say that changing terminology is costly and this particular change was not worth
the effort.

10 CHAPTER 2: LOG4J ARCHITECTURE

notion of levels is common to all logging libraries. For example, the venerable Unix
Syslog system also refers to levels whereas Microsoft NT Event Logging refers to
event types.

One of the lessons learned from Syslog was that it is not always easy to decide when
to use which level. In fact, as a Syslog user, I could never fully grasp the difference
between the LOG_EMERG, LOG_ALERT and LOG_CRIT levels or the difference
between LOG_WARNING and LOG_NOTICE. My suspicion is that the 3 bit encod-
ing of levels in priorities left room for exactly eight levels and the authors of Syslog
made use of all the available space. This is a common pattern in network-enabled
protocols which have as many options as are allowed by the space allocated in their
encoding. Some of these options are not meaningful and only serve as placeholders
for confusion. There is not much glory in criticizing Syslog, especially twenty-five
years after its inception. During that quarter of a century the world witnessed the
most feverish advances in computer technology. And yet, Syslog still runs on mil-
lions on Unix systems with great success. My wish is to see log4j share the same fate
in twenty-five years.

As mentioned previously, it is not always easy to decide when to use which level. In
fact, a decision needs to be made for each log statement – or on countless occasions.
To ease the pain of deciding, log4j deliberately offers a limited set of “self-evident”
levels which we now present:

The FATAL level is rarely used and usually implies the impending crash of the ap-
plication or the relevant sub-component. The ERROR level is encountered more fre-
quently, usually following a Java exception. Error conditions do not necessarily
cause the application to crash and the application may continue to service subsequent
requests. The WARN level is indicative of minor problems caused by factors exter-
nal to the application such as missing or inconsistent input parameters supplied by
the user.

These first three levels are associated with problems. In contrast, the INFO level is
associated with significant events in the normal life cycle of the application. The
DEBUG level is associated with minor and frequently occurring but otherwise nor-
mal events. Deciding whether an event is significant or minor depends on many fac-
tors such as the time, the application development stage, the component doing the
logging and the personal tastes of the developer. In the general however, the fre-
quency and volume of the events serve a useful yardstick for differentiating between
the INFO and DEBUG levels.

Admittedly, even with only five levels the choice is not easy. After some discussion,
most development teams set their own rules for using levels. Some teams even de-

LEVELS 11

cide to extend the predefined set of five levels. It is important to realize that levels
are essentially just a way to filter log requests; that is their main function.

Log4j offers many ways for filtering logging requests. After a rather abstract discus-
sion we are ready to describe the most important filter, the logger-level filter. This
filter depends on the notion of the effective level of a logger, a term defined below.

Loggers may be assigned levels. I say, “may” because one of the big advantages of
the log4j framework is that most loggers do not need to be assigned a level. This
greatly reduces the time spent managing logging. The set of possible levels, that is
ALL5, DEBUG, INFO, WARN, ERROR, FATAL and OFF, are defined in the
org.apache.log4j.Level class. You are also free to define your own custom levels by
sub-classing the Level class.

The effective level of a logger is given by its assigned level, if it is assigned one.
Otherwise, if the logger has not been assigned a level, it inherits the level of its clos-
est ancestor with an assigned level. More formally,

Effective level of a logger

 The effective or inherited level of logger L is equal to the first non-null
level in the logger hierarchy, starting at L and proceeding upwards in the
hierarchy towards the root logger.

To ensure that all loggers can eventually inherit a level, the root logger always has an
assigned level. Its level can be changed to any non-null value of type Level.

Below are four tables with various assigned and effective levels for a simple logger
hierarchy consisting of the root logger and three loggers named x, x.y and x.y.z.

Example 2-1: Level inheritance with only root having an assigned level

Logger name Assigned level Effective level
root DEBUG DEBUG

x none DEBUG

5 The ALL and OFF levels are intended for management purposes only. They do not have
corresponding printing methods in the Logger class. For this reason, they were omitted in the
previous discussion.

12 CHAPTER 2: LOG4J ARCHITECTURE

x.y none DEBUG

x.y.z none DEBUG

In Example 2-1 above, only the root logger is assigned a level. This level, DEBUG,
is inherited by the other loggers x, x.y and x.y.z. More generally, if none of the log-
gers are assigned a level, then all loggers inherit the level of the root logger which is
set to DEBUG by default.

Example 2-2: Level Inheritance with all loggers having an assigned level

Logger name Assigned level Effective level
root DEBUG DEBUG

x ERROR ERROR
x.y INFO INFO

x.y.z DEBUG DEBUG

In Example 2-2, all loggers have an assigned level. There is no need for level inheri-
tance.

Example 2-3: Level Inheritance

Logger name Assigned level Effective level
root INFO INFO

x DEBUG DEBUG
x.y none DEBUG

x.y.z WARN WARN

In Example 2-3, the loggers root, x and x.y.z are assigned the levels INFO, DEBUG
and WARN respectively. The logger x.y inherits its level value DEBUG from its par-
ent x.

Example 2-4: Level Inheritance

Logger name Assigned level Effective level
root DEBUG DEBUG

x ERROR ERROR
x.y none ERROR

x.y.z none ERROR

LOGGER-LEVEL FILTER 13

In Example 2-4, the loggers root and x and are assigned the levels DEBUG and ER-
ROR respectively. The loggers x.y and x.y.z inherit their level (ERROR) from their
nearest parent with an assigned level, x in this case.

Logger-Level filter
By definition, the printing method determines the level of a logging request. For ex-
ample, if x is a logger instance, then the statement x.info("Hello world.") is a
log request of level INFO.

A log request is said to pass the logger-level filter if its level is higher than or equal
to the effective level of its logger. Otherwise, the request is disabled and dropped.
Keep in mind that a logger without an assigned level will inherit one from the hierar-
chy. The logger-level filter can be more formally stated as follows.

Logger-Level Filter

 A log request of level lR on a logger with effective level lE, passes the log-
ger-level filter if and only if lR ≥ lE. The request is disabled (and dropped)
otherwise.

This filter is at the heart of log4j. It sets it aside from older logging libraries although
most recent logging libraries now incorporate similar mechanisms. The logger-level
filter depends of the ordering of levels. For the standard log4j levels, we have the
following ordering: ALL < DEBUG < INFO < WARN < ERROR < FATAL < OFF.
Here is the logger-level filter in action.

package chapter2;

import org.apache.log4j.Logger;
import org.apache.log4j.Level;
import org.apache.log4j.BasicConfigurator;

public class LLF {

 static public void main(String[] args) {

 BasicConfigurator.configure();

 // get a logger instance named "com.foo"
 Logger logger = Logger.getLogger("com.foo");

14 CHAPTER 2: LOG4J ARCHITECTURE

 // Now set its level. Usually you do not need to set the level of
 // a logger programmatically but rather in a configuration script.
 // We do it here nonetheless for the purposes of this exercise.
 logger.setLevel(Level.INFO);

 Logger barLogger = Logger.getLogger("com.foo.Bar");

 // Noting that WARN is the level of this logging request whereas
 // INFO is logger's effective level, this request is enabled
 // because WARN >= INFO.
 logger.warn("Low fuel level.");

 // This request is disabled, because DEBUG < INFO.
 logger.debug("Starting search for nearest gas station.");

 // The logger instance barLogger, named "com.foo.Bar", will
 // inherit its level from the logger named "com.foo" Thus, the
 // following request is enabled because INFO >= INFO.
 barLogger.info("Located nearest gas station.");

 // This request is disabled, because DEBUG < INFO.
 barLogger.debug("Exiting gas station search");
 }
}

Compiling examples/chapter2/LLF.java and executing it should produce the follow-
ing (or very similar) output on the console.

0 [main] WARN com.foo - Low fuel level.
10 [main] INFO com.foo.Bar - Located nearest gas station.

Since it is one of the core features of log4j, I highly recommended that you take the
time to fully grasp the functioning of the logger-level filter. Experimenting on your
own is likely to be helpful as well.

Hierarchy-wide Threshold Filter
Log4j allows you to set a hierarchy-wide threshold such that a request below the
threshold is dropped regardless of the logger or its effective level. The hierarchy-
wide threshold can be viewed as a central switch that can turn logging on or off for
the entire hierarchy. For example, if you choose to set the hierarchy-wide threshold
to the INFO level, then you have effectively disabled logging below the level such
that all debug level requests will be dropped regardless of the logger and its configu-
ration.

Although it was presented second, the hierarchy-wide threshold filter is applied prior
to the logger-level filter. This has important performance implications that are further
discussed later in this chapter. By default, the hierarchy-wide level is set to the ALL

HIERARCHY-WIDE THRESHOLD FILTER 15

level, which is the lowest possible level. Thus, the hierarchy-wide threshold does not
filter out any requests – letting the logger-level filter and subsequent filters to take
charge of deciding on the fate of logging requests.

Example 2-5: Hierarchy-wide threshold in action

package chapter2;
import org.apache.log4j.Logger;
import org.apache.log4j.Level;
import org.apache.log4j.spi.LoggerRepository;
import org.apache.log4j.BasicConfigurator;

public class HWT {

 static public void main(String[] args) {

 BasicConfigurator.configure();

 Logger x = Logger.getLogger("foo.bar");
 x.setLevel(Level.INFO);

 // get the containing repository
 LoggerRepository repository = x.getLoggerRepository();

 // Set the hierarchy-wide threshold to WARN effectively disabling
 // all INFO and DEBUG requests.
 repository.setThreshold(Level.WARN);

 // This request will be dropped because the hierarchy-wide
 // threshold is set to WARN even if the logger x is enabled for
 // the INFO level.
 x.info("Dropped message.");

 // Now, let us disable all levels. This will turn off logging
 // entirely, i.e. nothing will ever log.
 repository.setThreshold(Level.OFF);

 // This FATAL level request will be dropped because all levels
 // are turned off.
 x.fatal("This is a serious message but it will also be dropped.");

 // Now, let us set the hierarchy-wide threshold to ALL, the lowest
 // possible level. All requests will now pass unhindered through
 // the hierarchy-wide filter.
 repository.setThreshold(Level.ALL);

 // This request will be logged because the hierarchy-wide
 // threshold is set to ALL and the logger x is enabled for the
 // INFO level.
 x.info("Hello world.");

 // The logger-level filter will cause the following request to be

16 CHAPTER 2: LOG4J ARCHITECTURE

 // dropped. Indeed, the logger level (WARN) is higher than the
 // request level (DEBUG).
 x.debug("Remember: DEBUG < WARN.");
 }
}

Running the HWT application will yield:

0 [main] INFO foo.bar - Hello world.

Normally, you do not need to set the hierarchy-wide threshold programmatically.
Repositories and loggers are configured using configuration scripts. Configuration
scripts are discussed in the next chapter.

Appenders
The ability to selectively filter out logging requests is only one part of the picture.
Log4j allows logging requests to print to multiple destinations. In log4j speak, an
output destination is called an appender. Currently, appenders exist for the console,
files, Swing components, remote socket servers, JMS, NT Event Loggers, and remote
UNIX Syslog daemons. It is also possible to log asynchronously. If you need to log
to a particular output device, chances are good that someone has already written a
log4j appender for that device although it is not difficult to write your own appender
suited for your particular needs.

Log4j allows attaching multiple appenders to any logger. Appenders can be added to
and removed from a logger at any time. The central architectural concept in log4j is
the hierarchical arrangement of loggers. As explained previously, loggers inherit
their effective level from the hierarchy. A logger can make use of one and only one
level. Appenders are different because multiple appenders can be attached to a log-
ger. It makes sense to inherit appenders attached to higher loggers in a child logger.
How should appender inheritance work in its nitty-gritty details?

Appender Additivity

Invoking the addAppender method (see the Logger class) adds an appender to a
given logger. Each enabled logging request for a given logger will be forwarded to
all the appenders in that logger as well as the appenders higher in the hierarchy. In
other words, appenders are inherited additively from the logger hierarchy. For exam-
ple, if a console appender is added to the root logger, then all enabled logging re-
quests will at least print on the console. If in addition a file appender is added to a
logger, say L, then enabled logging requests for L and L's children will print on a file
and on the console. It is possible to override this default behavior so that appender
accumulation is no longer additive by setting the additivity flag to false.

APPENDERS 17

The rule governing appender additivity is summarized below.

Appender Additivity Rule

 The output of a log statement of some logger L is forwarded to all the ap-
penders in L and its ancestors. This is the meaning of the term "appender
additivity".

However, if an ancestor of logger L, say P, has its additivity flag set to
false, then L's output will be directed to all the appenders in L and it's an-
cestors up to and including P but not the appenders in any of the ancestors
of P.

Loggers have their additivity flag set to true by default.

Log4j configuration is declarative. By this I mean that the end-user normally does
not manipulate appenders programmatically but through configuration files. For edu-
cational purposes, the next example programmatically instantiates two separate
FileAppenders and adds them to the root logger.

package chapter2;

import org.apache.log4j.Logger;
import org.apache.log4j.FileAppender;
import org.apache.log4j.SimpleLayout;

public class AppenderEx1 {

 static public void main(String[] args) throws Exception {

 FileAppender a0 = new FileAppender(new SimpleLayout(), "a0.log");
 FileAppender a1 = new FileAppender(new SimpleLayout(), "a1.log");

 Logger root = Logger.getRootLogger();
 root.addAppender(a0);

 Logger x = Logger.getLogger("x");
 x.addAppender(a1);

 Logger xyz = Logger.getLogger("x.y.z");

 // Note that we have not added any appenders to the xyz logger.
 xyz.debug("Some message.");
 xyz.info("Another message.");
 }

18 CHAPTER 2: LOG4J ARCHITECTURE

}

Executing java chapter2.AppenderEx1 will create two files a0.log and a1.log con-
taining the following text.

DEBUG - Some message.
INFO - Another message.

Notice that the two log requests are made using the "xyz" logger but the output is
nevertheless directed to the appenders attached to the "x" and root loggers. This ex-
ample demonstrates the additive manner in which appenders are inherited. You are
probably wondering about the two lines instantiating the two FileAppender ob-
jects. The first parameter to the FileAppender is a layout. Layouts will be intro-
duced shortly. The second parameter is the name of the file to write to.
The next example demonstrates the effects of setting the additivity flag of a logger to
false.

package chapter2;

import org.apache.log4j.Logger;
import org.apache.log4j.FileAppender;
import org.apache.log4j.SimpleLayout;

public class AppenderEx2 {

 static public void main(String[] args) throws Exception {

 FileAppender a0 = new FileAppender(new SimpleLayout(), "a0.log");
 FileAppender a1 = new FileAppender(new SimpleLayout(), "a1.log");
 FileAppender secureAppender = new FileAppender(new SimpleLayout(),
 "secret.log");

 Logger root = Logger.getRootLogger();
 root.addAppender(a0);

 Logger x = Logger.getLogger("x");
 x.addAppender(a1);

 Logger xyz = Logger.getLogger("x.y.z");

 Logger secureLogger = Logger.getLogger("secure");
 secureLogger.addAppender(secureAppender);
 secureLogger.setAdditivity(false);

 // The accessLogger is a child of the secureLogger.
 Logger accessLogger = Logger.getLogger("secure.access");

 // Output goes to a0.log and a1.log.
 xyz.debug("Regular message.");

 // Ouput goes only to secret.log.

LAYOUTS 19

 accessLogger.warn("Detected snooping attempt by Eve.");
 }
}

After executing sample application chapter2.AppenderEx2, you should find the fol-
lowing text

WARN - Detected snooping attempt by Eve.

in the secret.log file, but this text will not be present in a0.log or a1.log because the
additivity flag of secureLogger (the parent of accessLogger) has been set to
false. It goes without saying that appender additivity applies to appenders of all types
even if we just used FileAppenders in the above examples.

Layouts
More often than not, users wish to customize not only the output destination but also
the output format. This is accomplished by associating a layout with an appender.
The layout is responsible for formatting the logging request according to the user's
wishes, whereas an appender takes care of sending formatted output to its destina-
tion. Most layouts are not designed to be shared by multiple appenders. It follows
that each appender has its own “private” layout.

A common layout called the PatternLayout, part of the standard log4j distribu-
tion, lets the user specify the output format according to conversion patterns similar
to the C language’s printf function. For example, a PatternLayout with the
conversion pattern "%r [%t] %-5p %c - %m%n" will output something akin to:

176 [main] INFO org.wombat.Bar - Located nearest gas station.

The first field is the number of milliseconds elapsed since the start of the program.
The second field is the thread that executed the log request. The third field is the
level of the log statement. The fourth field is the name of the logger associated with
the log request. The text after the '-' is the message of the statement. Specific configu-
ration parameters for layouts, including the PatternLayout, will be discussed in later
chapters.

Object Rendering

Object rendering is a powerful and unique log4j feature. Log4j will render the con-
tent of the log messages according to user specified criteria. For example, if you fre-
quently need to log oranges, an object type used in your current project, then you can

20 CHAPTER 2: LOG4J ARCHITECTURE

register an OrangeRenderer that will be invoked whenever an orange object is
passed as the message parameter in a logging statement. The previously registered
OrangeRenderer will be invoked to render a string representation of orange ob-
jects. Here is an (incomplete) example of how object rendering might work.

Orange orange = new Orange("89", "jaffa");
logger.debug("Here is how a rendered orange looks:");
logger.debug(orange);

Here is a possible outcome assuming the appropriate renderer and object types were
properly registered.

4309 DEBUG [main] example.orange - Here is how a rendered orange looks:
4312 DEBUG [main] example.orange - jaffa brand, weighing 89 grams.

Object rendering follows the class hierarchy. For example, assuming oranges are
fruits, if you register a FruitRenderer, all fruits including oranges will be rendered
by the FruitRenderer, unless of course you registered an orange specific
OrangeRenderer.

Object renderers are required to implement the org.apache.log4j.or.Object-
Renderer interface. Log4j comes with a few useful renderers. For example, you
can use the AttributesRenderer6 to render org.xml.sax.Attributes ob-
jects.

A Peek under the Hood
After we have introduced the essential log4j components, we are now ready to de-
scribe the steps that the log4j framework takes when the user invokes a printing
method of a logger. Assume that the user invokes the info() printing method of a
logger named "com.wombat".

1. Hierarchy-wide threshold check

Every single logger has a reference to the repository that created it. A logger will
drop the request by immediately exiting the printing method if the repository is not
enabled for the request level, INFO in this particular case. The hierarchy-wide
threshold was discussed earlier in this chapter. The cost of this test is just a method
invocation and an integer comparison – in other words extremely low.

6 The AttributesRenderer is located in the org.apache.log4j.or.sax package.

A PEEK UNDER THE HOOD 21

2. Apply the Logger-Level filter

Next, log4j compares the effective level of the "com.wombat" logger with the level
of the request (INFO) using the logger-level filter. If the logging request is disabled,
then log4j will drop the request without any further processing by exiting the printing
method, Logger.info().

3. Creating a LoggingEvent object

If the request is enabled, then log4j will create a org.apache.log4j.spi.-
LoggingEvent object containing all the relevant parameters of the request such as
the logger of the request, the level of the request, the message as an object, the cur-
rent thread and the current time. Other fields are initialized lazily, that is only when
they are actually needed. The LoggingEvent class is described in more detail in the
next section.

4. Invoking appenders

After the creation of a LoggingEvent object, log4j will proceed to invoke the
doAppend() methods of all the applicable appenders, that is, the appenders inher-
ited from the logger hierarchy.

All appenders shipped with the log4j distribution extend the AppenderSkeleton
abstract class that implements the doAppend method in a synchronized block ensur-
ing thread-safety. The doAppend method of AppenderSkeleton also invokes fil-
ters attached to the appender, if any such filters exist. Filters that can be dynamically
attached to appenders will be presented Chapter 6.

5. Formatting the LoggingEvent

It is responsibility of the invoked appender to format the logging event. However,
most (but not all) appenders delegate the task of formatting the logging event to their
layout. Their layout formats the LoggingEvent instance and returns the result as a
String. The formatting of event message (but not the whole logging event) is usu-
ally delegated to object renderers of the logger repository. Note that some appenders,
such as the SocketAppender, do not transform the logging event into a string but
serialize it instead. Consequently, they do not require nor have a layout.

6. Sending out the LoggingEvent

After the logging event is fully formatted it is sent to its destination.

22 CHAPTER 2: LOG4J ARCHITECTURE

LoggingEvent class
After a logging request passes the hierarchy-wide threshold and the logger-level fil-
ter, although not absolutely certain the chances are high that the log request will be
ultimately written to some medium. After these two verifications, log4j creates a
LoggingEvent7 object, log4j's internal representation of log requests. We talk about
a logging event when discussing log4j internals, whereas we use the term logging
request to refer to the invocation of log4j printing methods by the user. Consider the
two terms as quasi-synonyms used interchangeably in the text.

Some of the fields composing a LoggingEvent object are assigned within the object
constructor. These fields are the level of the request, the logger, the current time, the
message parameter passed by the user and the associated throwable if any. The cur-
rent time is a value returned by System.currentTimeMillis() method which
corresponds to the number of milliseconds elapsed since midnight, January 1st, 1970
UTC. This value is locale independent. Ignoring drifts in their respective clocks, two
logging events generated at the same instant on two computers in different time
zones, possibly thousands of kilometers apart, will bear the same timestamp.

Other fields such as the thread name, NDC, MDC and LocationInformation are
initialized lazily, that is when accessed for the first time. The NDC and MDC fields
are discussed in later chapters. LocationInformation is log4j's internal represen-
tation of the caller's location which includes the caller's file name, line number and
class name. The location information is extracted from the program execution stack
in a relatively slow and time consuming process. Moreover, location information
may not always be available because certain just-in-time compilers and other code
optimizers modify the structure of the execution stack.

LoggingEvent is serializable class. This allows a logging event instance created on
one machine to be logged remotely on a different host. The remote host can manipu-
late a deserialized event as if it were generated locally. Reading the source code of
the LoggingEvent class you perhaps noticed that several of its fields are marked
public which is contrary to object oriented design principles. If you look more care-
fully, you will notice that several of these fields are marked as final public allow-
ing any class to access these fields directly but not to modify them. For various and
involved technical reasons, the level field is marked as transient public. This
combination means that it is read/write accessible by everyone but not serialized.

7 The LoggingEvent class is located in the org.apache.log4j.spi package.

PERFORMANCE 23

Thus, any class can modify the level of an event. However, LoggingEvent objects
are only visible to appenders attached to loggers in the hierarchy or to associated lay-
outs. In theory, a rogue appender could modify the logger or level of an event. So far
this has never been a problem although a malicious appender or layout could take
advantage of this vulnerability. It is hard to imagine an exploit based on this vulner-
ability but one can never be completely sure. In any case, make sure to verify the ori-
gin of any appender used in a sensitive application. In future log4j releases, the level
field will be marked as private, only accessible through accessor methods.

Performance
One of the often-cited arguments against logging is its computational cost. This is a
legitimate concern as even moderately sized applications can generate thousands of
log requests. Much effort was spent measuring and tweaking logging performance.
Log4j claims to be reliable, fast and extensible – in that order of priority. Independ-
ently of these efforts, the user should still be aware of the following performance is-
sues.

1. Logging performance when logging is turned off entirely.

You can turn off logging entirely by setting the threshold of a repository to
Level.OFF, the highest possible level. See Hierarchy-wide Threshold on page 14 on
how to set a threshold of a repository. When logging is turned off entirely or for a
level below the threshold, the cost of a log request consists of a method invocation
plus an integer comparison. On a 233 MHz Pentium II machine this cost is typically
in the 5 to 50 nanosecond range.

However, any method invocation involves the "hidden" cost of parameter construc-
tion. For example, for some logger x writing,

x.debug("Entry number: " +i+" is "+entry[i]);

incurs the cost of constructing the message parameter, i.e. converting both integer i
and entry[i] to a string, and concatenating intermediate strings, regardless of whether
the message will be logged or not.

The cost of parameter construction can be quite high and depends on the size of the
parameters involved. To avoid the cost of parameter construction you can write:

if(x.isDebugEnabled() {
 x.debug("Entry number: "+i+" is "+String.valueOf(entry[i]));
}

24 CHAPTER 2: LOG4J ARCHITECTURE

This will not incur the cost of parameter construction if the debug level is disabled.
On the other hand, if the logger is debug-enabled, it will twice incur the cost of
evaluating whether the logger is enabled or not: once in isDebugEnabled() and
once in debug(). This is an insignificant overhead because evaluating a logger takes
less than 1% of the time it actually takes to log. If a method contains multiple log
statements, it may be possible to factor out the tests. Here is an example:

public void foo(Object[] a) {

 boolean debug = x.isDebugEnabled();

 for(int i = 0; i < a.length; i++) {
 if(debug)
 x.debug("Original value of entry number: "+i+" is "+a[i]);

 a[i] = someTransformation(a[i]);

 if(debug)
 x.debug("After transformation the value is "+a[i]);
 }
}

In log4j, logging requests are made to instances of the Logger class. Logger is a
class and not an interface. This measurably reduces the cost of method invocation at
the cost of some flexibility, although in some recent JVMs, the performance differ-
ence became negligible.

Certain users resort to preprocessing or compile-time techniques to compile out all
log statements. Most java compilers, including javac and jikes, will remove condi-
tional statements which are assured to always evaluate as false. In the next example,
the compiler will remove the dead if statement in the foo method by compiling it as
an immediately returning method.

package chapter2;

import org.apache.log4j.Logger;

public class FactorOut {
 static final boolean D = false;
 static Logger logger = Logger.getLogger(FactorOut.class);

 void foo(int i) {
 if(D) logger.debug("Input parameter is :"+ i);
 }
}

PERFORMANCE 25

Compile the FactorOut class with any java compiler. Disassemble the resulting
class by running javap, the standard Java Class File Disassembler shipped with the
JDK:

javap -c chapter2.FactorOut

This will yield byte code information for the foo method, (cut to fit):

Method void foo(int)
 0 return

In other words, the compiler was able to weed out and eliminate the dead if state-
ment. Note that if the D static variable were not final, the compiler could not have
optimized the if statement. The foo method would instead disassemble as:

Method void foo(int)
 0 getstatic #7 <Field boolean D>
 3 ifeq 31
 6 getstatic #8 <Field org.apache.log4j.Logger logger>
 9 new #9 <Class java.lang.StringBuffer>
 12 dup
 13 invokespecial #10 <Method java.lang.StringBuffer()>
 16 ldc #11 <String "Input parameter is :">
 18 invokevirtual #12 <Method java.lang.StringBuffer append(
 java.lang.String)>
 21 iload_1
 22 invokevirtual #13 <Method java.lang.StringBuffer append(int)>
 25 invokevirtual #14 <Method java.lang.String toString()>
 28 invokevirtual #15 <Method void debug(java.lang.Object)>
 31 return

Such final static variables need not be present in each class file. One can conven-
iently place them in a single class and import it in other classes. As long as the condi-
tional expression is guaranteed to be false, the compiler will eliminate dead if
statements. Section 14.19 of the Java Language specification, entitled “Unreachable
Statements,” requires that every java compiler carry out conservative flow analysis to
make sure all statements are reachable. Compilers are required to report an error if a
statement cannot be executed because it is unreachable. Interestingly enough, if
statements are a special case such that unreachable if statements do not generate
compile time errors, in contrast to other unreachable statements. In fact, the authors
of the specification explicitly state that this behavior is required in order to support
conditional compilation. The same section also warns that "conditionally compila-
tion" has significant impact on binary compatibility. For example, if classes A, B, and
C import a flag variable form class F, then changing the value of the flag variable and
compiling F will not impact the already compiled versions of A, B, and C. Beware of
this problem if your classes are compiled selectively.

26 CHAPTER 2: LOG4J ARCHITECTURE

The conditional compilation technique leads to perfect performance efficiency with
respect to logging. However, since the resulting application binary does not contain
any log statements, logging cannot be turned on for that binary. This is perhaps a
disproportionate price to pay in exchange for a (possibly) small performance gain.
The performance gain will be significant only if log statements are placed in tight-
loops where the same log request is invoked potentially millions or even billions of
times. Inserting logging statements in tight-loops is a lose-lose proposal. It will slow
down your application even if logging is turned off or generate massive (and hence
useless) logging output if enabled.

2. The performance of deciding whether to log or not to log when logging is
turned on.

This is essentially the performance of walking the logger hierarchy. When logging is
turned on, log4j still needs to compare the level of the log request with the level of
the request logger. However, loggers may not have an assigned level; they can inherit
them from the logger hierarchy. Thus, before inheriting a level, the logger may need
to search its ancestors.

There has been a serious effort to make this hierarchy walk to be as fast as possible.
For example, child loggers link only to their existing ancestors. This significantly
improves the speed of the walk, especially in "sparse" hierarchies.

The cost of walking the hierarchy is typically 3 times slower than just checking
whether logging is turned off entirely.

3. Actual logging (formatting and writing to the output device).

This is the cost of formatting the log output and sending it to its target destination.
Here again, a serious effort was made to make layouts (formatters) perform as
quickly as possible. The same is true for appenders. The typical cost of actually log-
ging is about 100 to 300 microseconds. See
org.apache.log4j.performance.Logging for actual figures.

Although feature-rich, one of the foremost design goals of log4j was speed of execu-
tion, a requirement which is second only to reliability. Some log4j components have
been rewritten many times to improve performance. Nevertheless, contributors fre-
quently come up with new optimizations. You should be pleased to know that when

PERFORMANCE 27

configured with the SimpleLayout, performance tests have shown log4j to log as
quickly as System.out.println8.

Now that you have an understanding of loggers, their hierarchical nature, of levels,
appenders, layouts and other log4j building blocks, the next chapter will show you to
configure log4j declaratively using configuration scripts.

8 Given that on Windows NT printing on the console is rather slow, the performance tests
were done on a screen with a window size of just one row. This considerably accelerates the
output rate on the console.

3.Configuration scripts

 In symbols one observes an advantage in discov-
ery which is greatest when they express the exact
nature of a thing briefly and, as it were, picture
it; then indeed the labor of thought is wonderfully
diminished.

Leibniz

Inserting log requests into the application code requires a fair amount of planning
and effort. My observations show that approximately 4 percent of code is dedicated
to logging. Consequently, even moderately sized applications will have thousands of
logging statements embedded within their source code. Given their number, it be-
comes imperative to manage these log statements without the need to modify them
manually.

The log4j environment is fully configurable programmatically. However, it is far
more flexible to configure log4j using configuration files. Currently, configuration
files can be written Java properties (key=value) format or in XML. In this chapter I
will give examples of log4j configuration files expressed in properties (key=value)
format and in XML format.

Simplest approach using BasicConfigurator
As mentioned in Chapter 1, the simplest way to configure log4j is by using Basic-
Configurator.configure() method. Let us give a taste of how this is done with
the help of an imaginary application called MyApp1.

package chapter3;

import org.apache.log4j.Logger;
import org.apache.log4j.BasicConfigurator;

public class MyApp1 {

 final static Logger logger = Logger.getLogger(MyApp1.class);

SIMPLEST APPROACH USING BASICCONFIGURATOR 29

 public static void main(String[] args) {

 //Set up a simple configuration that logs on the console.
 BasicConfigurator.configure();

 logger.info("Entering application.");
 Foo foo = new Foo();
 foo.doIt();
 logger.info("Exiting application.");
 }
}

MyApp1 begins by importing log4j related classes. It then defines a static logger vari-
able with the name “chapter3.MyApp” by invoking the Logger.getLogger
method. This variant of the getLogger method takes a class parameter. The re-
turned logger will have the fully qualified class name of the class parameter. MyApp1
uses the Foo class defined in the same package, as listed below.

package chapter3;
import org.apache.log4j.Logger;

public class Foo {
 static final Logger logger = Logger.getLogger(Foo.class);

 public void doIt() {
 logger.debug("Did it again!");
 }
}

Invoking of the BasicConfigurator.configure() method creates a rather sim-
ple log4j setup. This method is hardwired to add a ConsoleAppender to the root
logger. The output is formatted using a PatternLayout set to the pattern "%-4r
[%t] %-5p %c %x - %m%n". Note that by default the root logger is assigned to the
DEBUG level.

The output of the command java chapter3.MyApp1 should be similar to:

0 [main] INFO chapter3.MyApp1 - Entering application.
0 [main] DEBUG chapter3.Foo - Did it again!
0 [main] INFO chapter3.MyApp1 - Exiting application.

If you are unable to run this command, then make sure that your CLASSPATH envi-
ronment variable is setup properly. Refer to the section entitled “Running the Exam-
ples” on page 2 for more details.

The figure below depicts the object diagram of MyApp1 after just having called the
BasicConfigurator.configure() method.

30 CHAPTER 3: CONFIGURATION SCRIPTS

Figure 3-1: Object diagram for the log4j hierarchy in MyApp1.

As a side note, let me mention that in log4j child loggers link only to their existing
ancestors. In particular, the logger named “chapter3.Foo” is linked directly to the
root logger, thereby circumventing the unused “chapter3” logger. This noticeably
improves the performance of hierarchy walks and also reduces log4j's memory foot-
print by a small amount.

The MyApp1 class configures log4j by invoking BasicConfigura-
tor.configure() method. All other classes only need to import the
org.apache.log4j.Logger class, retrieve the loggers they wish to use, and log
away. For example, the only dependence of the Foo class on log4j is the
org.apache.log4j.Logger import. Except code that configures log4j (if such
code exists) user code does not need to depend on log4j except for the Logger class.
Given that the java.util.logging API enjoys a similar property it is rather easy to mi-
grate large bodies of code from java.util.logging to log4j, or vice versa, at the stroke
of just a few simple string search-and-replace operations.

SIMPLEST APPROACH USING BASICCONFIGURATOR 31

The same using PropertyConfigurator

The previous example outputs logging information always in the same fixed manner.
Fortunately, it is easy to modify MyApp1 so that the log output can be controlled at
run-time. Here is a slightly modified version called MyApp2.

package chapter3;

import org.apache.log4j.Logger;
import org.apache.log4j.PropertyConfigurator;

public class MyApp2 {

 final static Logger logger = Logger.getLogger(MyApp2.class);

 public static void main(String[] args) {

 PropertyConfigurator.configure(args[0]);

 logger.info("Entering application.");
 Foo foo = new Foo();
 foo.doIt();
 logger.info("Exiting application.");
 }
}

MyApp2 instructs PropertyConfigurator to parse a configuration file and to set
up logging according to the instructions found therein. The sample configuration file
listed below, also available as examples/chapter3/sample0.properties, configures
log4j (after parsing by PropertyConfigurator) in the same way as BasicCon-
figurator.configure.

Example 3-1: BasicConfigurator.configure() equivalent (exam-
ples/chapter3/sample0.properties)

Set root logger level to DEBUG and add an appender called A1.
log4j.rootLogger=DEBUG, A1

A1 is set to be a ConsoleAppender.
log4j.appender.A1=org.apache.log4j.ConsoleAppender

A1 uses PatternLayout.
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%-4r [%t] %-5p %c %x -
%m%n

Assuming the current directory is $MANUAL_HOME/examples, try executing the
following command:

32 CHAPTER 3: CONFIGURATION SCRIPTS

java chapter3.MyApp2 chapter3/sample0.properties

The output of this command is very similar to the output of the previous example,
except that MyApp2 retrieves a logger called “chapter3.MyApp2” instead of “chap-
ter3.MyApp1”. The output will reflect this difference.

It is often very useful to define the log4j.debug system property in order to instruct
log4j to also output internal debugging messages on the console. As in:

java -Dlog4j.debug chapter3.MyApp2 chapter3/sample0.properties

This should cause log4j to print internal debugging messages in addition to the actual
logs. Another way to instruct log4j to print internal debugging messages is to define
the log4j.debug property within the configuration file. As in:

log4j.debug=true
log4j.rootLogger=DEBUG, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender

... etc.

Internal log4j messages only appear on the console. As of this writing, the internal
debug messages cannot be redirected to output devices other than the console. The
limitation stems from the fact that log4j cannot use itself to perform its own logging.
This can be considered an intriguing architectural flaw which we intend to address in
future versions of log4j. Fortunately enough, it seems that this limitation has not had
any practical impact.

Syntax of Configuration Files in Properties for-
mat
A property configuration file consists of statements in the format “key=value”. Con-
figuration files are fed to a PropertyConfigurator instance which parses them
and configures log4j accordingly. A sample configuration file reproducing the Ba-
sicConfigurator.configurator behavior was given previously. More interesting and
useful examples will be given shortly. However, before delving into examples, a
more formal definition of the property file format is in order. Armed with the knowl-
edge about the expected syntax, you will be able to define elaborate configuration
files of your own. In the syntax definitions below constant width italic ele-
ments represent replaceable elements supplied by the user. Elements between brack-
ets represent optional elements.

SYNTAX OF CONFIGURATION FILES IN PROPERTIES FORMAT 33

Note that the PropertyConfigurator does not handle some advanced configura-
tion features supported in XML format, such as filter chains, custom error handling,
or nested appenders (e.g. AsyncAppender).

Setting the repository-wide threshold

The repository-wide threshold filters logging requests by level, regardless of the log-
ger. The syntax is:

log4j.threshold=[level]

The level value can consist of the case-insensitive string values “OFF”, “FATAL”,
“ERROR”, “WARN”, “INFO”, “DEBUG”, “ALL” or a custom level value. A cus-
tom level9 value can be specified in the form “level#classname”. The quote charac-
ters are not required and must be omitted in actual configuration files, as illustrated
in the following examples.

The following directive disables all logging for the entire hierarchy.

 log4j.threshold=OFF

The following directive disables logging for all the levels below the WARN level such
that logging request of levels INFO and DEBUG are dropped for all loggers regardless
of their effective level.

log4j.threshold=WARN

The following directive sets the hierarchy-wide threshold to ALL, such that all re-
quests are necessarily above the threshold.

log4j.threshold=ALL

By default the repository-wide threshold is set to the lowest possible value, namely
the level ALL. In other words, the hierarchy-wide threshold is inactive by default,
letting all logging requests to pass through to the next filter.

Appender configuration

Appenders are named entities. Names can contain any character except the equal ‘=’
character. Although discouraged, appender names can contain dots which do not pos-

9 We shall discuss custom levels in detail in Chapter 8 “Extending log4j.”

34 CHAPTER 3: CONFIGURATION SCRIPTS

ses any particular meaning in this context. The first step in configuring an appender
is to specify its name and class:

Specify the appender name as well its class.
log4j.appender.appenderName=fully.qualified.name.of.appender.class

This has the effect of instantiating an appender of the specified class and set its name.
The next step is to set the options of the appender. The syntax is:

log4j.appender.appenderName.option1=value1
log4j.appender.appenderName.option2=value2
...
log4j.appender.appenderName.optionN=valueN

The options, a.k.a. properties, of an appender are inferred dynamically using the well
known JavaBeans paradigm. Any setter method taking a single primitive java type,
an Integer, a Long, a String or a Boolean parameter corresponds to an option
(property). For example, given that the FileAppender class contains setAp-
pend(boolean), setBufferSize(int) and setFile(String) as member
methods, then it follows that Append, BufferSize and File are all valid option
names. Log4j can also deal with setter methods taking a parameter of type
org.apache.log4j.Level. For example, since the AppenderSkeleton class10
has setThreshold(Level) as a member method, Threshold is a valid option for
all log4j appenders extending AppenderSkeleton. Thus, even without a formal
list for the options of a given appender, it is easy to discover these options by looking
at the setter methods of the appender and the setter methods of its superclasses.

For each named appender you can also configure its layout. The syntax for configur-
ing a layout for a given named appender is shown next.

log4j.appender.appenderName.layout=fully.qualified.name.of.layout.class

This has the effect of instantiating a layout of the specified class and attach it to the
named appender instantiated earlier. In contrast to appenders which are named, lay-
outs do not have names as they do not need to be addressed individually. A layout is
associated with one and only one appender.

10 The AppenderSkeleton class is the base class for all appenders shipped in the official
log4j distribution.

SYNTAX OF CONFIGURATION FILES IN PROPERTIES FORMAT 35

Configuring loggers

After appenders and their associated layouts were specified, you can attach them to
loggers. In the most typical case, appenders are attached to the root logger. The syn-
tax for configuring the root logger is:

log4j.rootLogger=[level], [appenderName1, appenderName2, ...]

The above syntax means that an optional level can be followed by optional appender
names separated by commas. The level value can consist of the case-insensitive
string values “OFF”, “FATAL”, “ERROR”, “WARN”, “INFO”, “DEBUG”, “ALL”
or a custom level value. A custom level value can be specified in the form
“level#classname”. The quote characters are not required and must be omitted in ac-
tual configuration files.

If a level value is specified, then the root level is set to the corresponding level. If no
level value is specified, then the level of the root logger remains untouched. Multiple
appenders can be attached to any logger, including the root logger. Each named ap-
pender mentioned in the root logger directive will be added to the root logger. How-
ever, before adding these appenders, all the appenders previously attached to root
logger are closed and then detached.

For non-root categories the syntax is almost the same:

log4j.logger.loggerName=[level|INHERITED|NULL], [appenderName1, ap-
penderName2, ...]

where loggerName corresponds to the name of the logger you wish to configure.
There are no restrictions on logger names.

In addition to the level values allowed for the root logger, non-root loggers admit the
case-insensitive string values “INHERITED” and “NULL” which are synonymous.
These values have the effect of setting the logger’s level to null. Note that in actual
configuration files the quote charactes around “INHERITED” and “NULL” are un-
necessary and must be omitted.

If no level value is supplied, then the level of the named logger remains untouched.
By default loggers inherit their level from the hierarchy. However, if you set the level
of a logger and later decide that the logger should inherit its level, then you should
specify “NULL” or “INHERITED” as the level value.

Similar to the root logger syntax, each named appender will be attached to the name
logger. However, before attaching these new appenders any previously attached ap-

36 CHAPTER 3: CONFIGURATION SCRIPTS

penders to the named logger are first closed and then detached from the named log-
ger.

The syntax for setting the additivity flag of a logger is:

log4j.additivity.loggerName=[true|false]

Note that the “additivity” keyword appears before the logger name not after, as one
might expect. There is a rationale for this idiosyncrasy. By design all logger names
are considered valid, in particular a name that ends with “.addivity” – a very unlikely
case but one that still must be taken into consideration. The additivity flag applies
only to non-root loggers because a root logger, placed at the top of the hierarchy by
construction, has no parent loggers.

 ObjectRenderers

Object renderers, introduced on page 19, allow you to customize the way message
objects of a given type are converted to string before being logged. This is done by
specifying an ObjectRenderer for the object type would like to customize. The
syntax for specifying object renderers is as follows.

log4j.renderer.fqnOfRenrederedClass=fqnOfRenrederingClass

where FQN stands for fully qualified name. The following directive instructs log4j to
apply the com.wombat.FruitRenderer for log messages of type com.wombat.-
Fruit.

log4j.renderer.com.wombat.Fruit=com.wombat.FruitRenderer

Variable substitution

All option values admit variable substitution. The syntax of variable substitution is
similar to that of Unix shells. The string between an opening "${" and closing "}" is
interpreted as a key. The value of the substituted variable can be defined as a system
property or in the configuration file itself. The value of the key is first searched in the
system properties, and if not found there, it is then searched in the configuration file
being parsed. The corresponding value replaces ${aKey} sequence. For example, if
java.home system property is set to /home/xyz, then every occurrence of the se-
quence ${java.home} will be interpreted as /home/xyz. Recursive substitution is
also supported as the next script illustrates.

Example 3-2: Variable substitution (examples/chapter3/substitution.properties)

dir=${user.home}
file=test.log

SETTING THE HIERARCHY-WIDE THRESHOLD 37

target=${dir}/${file}
log4j.debug=true
log4j.rootLogger=debug, TEST
log4j.appender.TEST=org.apache.log4j.FileAppender
log4j.appender.TEST.File=${target}
log4j.appender.TEST.layout=org.apache.log4j.PatternLayout
log4j.appender.TEST.layout.ConversionPattern=%p %t %c - %m%n

Running MyApp2 with this script will output log messages into a file named test.log
in your home directory. The file name is build from the value of the target variable
composed by the concatenation of the dir and file variables. The dir variable is
itself built from the value of the user.home system property. For equivalent results,
we could have also written:

log4j.debug=true
log4j.rootLogger=debug, TEST
log4j.appender.TEST=org.apache.log4j.FileAppender
log4j.appender.TEST.File=${user.home}/test.log
log4j.appender.TEST.layout=org.apache.log4j.PatternLayout
log4j.appender.TEST.layout.ConversionPattern=%p %t %c - %m%n

Setting the hierarchy-wide threshold
The fastest but the least flexible way of filtering logging statements is by setting a
hierarchy-wide threshold. This approach was explained in detail in the current as
well as previous chapters. It is quite easy to set the repository-wide threshold in a
configuration file. This is illustrated in the sample configuration file listed below.

Example 3-3: Setting the hierarchy-wide threshold to WARN (exam-
ples/chapter3/sample1.properties)

log4j.rootLogger=DEBUG, CON
log4j.appender.CON=org.apache.log4j.ConsoleAppender
log4j.appender.CON.layout=org.apache.log4j.PatternLayout

log4j.appender.CON.layout.ConversionPattern=[%t] %-5p %c - %m%n

#Only print log statement of level WARN or above regardless of the
#logger.
log4j.threshold=WARN

Since MyApp2 does not contain any warn, error or fatal log statements, running the
MyApp2 application with the sample1.properties configuration file will not produce
any logging output.

38 CHAPTER 3: CONFIGURATION SCRIPTS

Setting the level of a logger
The central feature of any logging library is support for filtering logging messages
based on diverse criteria. One of the core features of log4j is its ability to filter log
statements by a logger’s effective level as discussed in section “Logger-Level filter”
on page 13.

Suppose we are no longer interested in seeing any INFO or DEBUG level logs from
any component belonging to the “chapter3” package. The following configuration
file illustrates a succinct way for achieving this.

Example 3-4: Setting the level of chapter3 logger to WARN (exam-
ples/chapter3/sample2.properties)

log4j.rootLogger=DEBUG, CON
log4j.appender.CON=org.apache.log4j.ConsoleAppender
log4j.appender.CON.layout=org.apache.log4j.PatternLayout

log4j.appender.CON.layout.ConversionPattern=[%t] %-5p %c - %m%n

Print only messages of priority WARN or above in package "chap-
ter3".
log4j.logger.chapter3=WARN

This configuration file sets the level of the logger named “chapter3” to WARN. In gen-
eral, every logger which is mentioned in a configuration is retrieved by calling the
Logger.getLogger() method with the logger name passed as argument. Remem-
ber that calling the Logger.getLogger() method multiple times with the same
name argument will return a reference to exactly the same logger instance. Interest-
ingly enough, the Java source code in MyApp2 does not refer directly to a logger
named “chapter3”. However, as a direct result of the named hierarchy rule, this log-
ger is the parent of the “chapter3.MyApp2”and “chapter3.Foo” loggers. As such,
these loggers automatically inherit the WARN level.

The following table summarizes the assigned and effective levels of the loggers after
PropertyConfigurator configures log4j using the sample2.properties file.

Logger name Assigned level Effective level
root DEBUG DEBUG

chapter3 WARN WARN
chapter3.MyApp2 null WARN

chapter3.Foo null WARN

SETTING THE LEVEL OF A LOGGER 39

Consequently, log request of level DEBUG and INFO made with the “chap-
ter3.MyApp2”and “chapter3.Foo” loggers will be suppressed. Running the MyApp2
application with sample2.properties configuration file will produce no output.

Changing the level of the “chapter3” logger to INFO will suppress DEBUG messages
but will allow messages of level INFO and above. Altering sample2.properties to

 log4j.logger.chapter3=INFO

and running the MyApp2 application with this modified configuration script will
yield:

[main] INFO chapter3.MyApp2 - Entering application.
[main] INFO chapter3.MyApp2 - Exiting application.

Needless to say, one can configure the levels of as many loggers as one desires. In
the next configuration file we set the level of the “chapter3” logger to WARN but at the
same time set the level of the “chapter3.Foo” logger to DEBUG.

Example 3-5: Setting the levels of multiple loggers (examples/chapter3/sample3.properties)

log4j.rootLogger=DEBUG, CON
log4j.appender.CON=org.apache.log4j.ConsoleAppender
log4j.appender.CON.layout=org.apache.log4j.PatternLayout

log4j.appender.CON.layout.ConversionPattern=%d %-5p %c - %m%n

Allow requests level WARN or above in "chapter3" package except in
"chapter3.Foo" where DEBUG or above is allowed.

log4j.logger.chapter3=WARN
log4j.logger.chapter3.Foo=DEBUG

Running MyApp2 with this configuration file will result in the following output on
the console, except the date that will be different for obvious reasons.

2002-03-20 16:36:36,069 DEBUG chapter3.Foo - Did it again!

After PropertyConfigurator configures log4j using the sample3.properties file,
the logger settings, more specifically their levels, are summarized in the following
table.

Logger name Assigned level Effective level
root DEBUG DEBUG

chapter3 WARN WARN
chapter3.MyApp2 null WARN

chapter3.Foo DEBUG DEBUG

40 CHAPTER 3: CONFIGURATION SCRIPTS

It follows that the two logging statements of level INFO in the MyApp2 class are sup-
pressed while the debug statement in Foo.doIt() method prints without hindrance.
Note that the level of the root logger is always set to a non-null value, which is DE-
BUG by default.

One rather important point to remember is that the logger-level filter depends on ef-
fective level of the logger being invoked and not the effective level of the parent log-
gers where appenders are attached. The configuration file sample4.properties is a
case in point:

Example 3-6 Independence of level settings (examples/chapter3/sample4.properties)

We set the level of the root logger to OFF.
log4j.rootLogger=OFF, CON
log4j.appender.CON=org.apache.log4j.ConsoleAppender
log4j.appender.CON.layout=org.apache.log4j.PatternLayout

log4j.appender.CON.layout.ConversionPattern=%d %-5p %c - %m%n

Set the level of the chapter3 logger to DEBUG.
log4j.logger.chapter3=DEBUG

The following table lists the loggers and their assigned and effective levels after con-
figuration with the sample4.properties configuration script.

Logger name Assigned level Effective level
Root OFF OFF

chapter3 DEBUG DEBUG
chapter3.MyApp2 null DEBUG

chapter3.Foo null DEBUG

The root logger is turned off totally, yet running MyApp2 with sample4.properties
will output:

2002-03-20 19:39:02,239 INFO chapter3.MyApp2 - Entering application.
2002-03-20 19:39:02,249 DEBUG chapter3.Foo - Did it again!
2002-03-20 19:39:02,249 INFO chapter3.MyApp2 - Exiting application.

Thus, the effective level of the root logger had no effect because the loggers in
chapter3.MyApp2 and chapter3.Foo classes inherit their level from the “chap-
ter3” logger. This result is a simple application of the rules announced so far. As
logical as it is, it is a common log4j pitfall that many novice users tend to ignore.

SETTING THE THRESHOLD OF AN APPENDER 41

Setting the threshold of an Appender
It is possible to restrain the contents of a log file (or any output target) by level. All
appenders shipped with the log4j distribution extend AppenderSkeleton class
which admits a property called Threshold. Setting the Threshold option of an ap-
pender will filter out all log events with a level lower than the level of the threshold.

For example, setting the threshold of an appender to DEBUG also allow INFO, WARN,
ERROR and FATAL messages to log, along with DEBUG messages. This is usually ac-
ceptable as there is little use for DEBUG messages without the surrounding INFO,
WARN, ERROR and FATAL messages. In a similar vein, setting the threshold to ERROR
will filter out DEBUG, INFO and WARN messages but will not hinder ERROR and FA-
TAL messages. This policy usually best encapsulates what the user actually wants to
do, as opposed to her mind-projected solution.

The configuration file sample5.properties shows an example of setting an appender
specific threshold.

Example 3-7:Setting appender specific threshold (examples/chapter3/sample5.properties)

log4j.rootLogger=DEBUG, C
log4j.appender.C=org.apache.log4j.ConsoleAppender

Set the appender threshold to INFO
log4j.appender.C.Threshold=INFO
log4j.appender.C.layout=org.apache.log4j.PatternLayout
log4j.appender.C.layout.ConversionPattern=%-4r [%t] %-5p %c %x - %m%n

Running MyApp2 with this configuration script will yield the following output:

0 [main] INFO chapter3.MyApp2 - Entering application.
10 [main] INFO chapter3.MyApp2 - Exiting application.

Since the debug request to the “chapter3.Foo” logger is below the threshold of the
appender named C, it is dropped by that appender. Note that as far as the loggers are
concerned the log message was enabled, it is the appender which decided to drop the
message at the last minute.

If you must absolutely filter events by exact level match, then you can attach a Lev-
elMatchFilter to a given appender in order to filter out logging events by exact
level match. The LevelMatchFilter is an instance of a custom filter. Custom fil-
ters are discussed in Chapter 6. Note that PropertyConfigurator does not sup-
port custom filters which can only be specified in XML configuration scripts.

42 CHAPTER 3: CONFIGURATION SCRIPTS

Multiple appenders
As mentioned in the previous chapter, log4j allows attaching multiple appenders to
any logger. The next configuration script illustrates the configuration of multiple ap-
penders.

Example 3-8: Multiple appenders (examples/chapter3/multiple.properties)

log4j.rootLogger=debug, stdout, R

log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout

Pattern to output the caller's file name and line number.
log4j.appender.stdout.layout.ConversionPattern=%5p [%t] (%F:%L) -
%m%n

log4j.appender.R=org.apache.log4j.RollingFileAppender
log4j.appender.R.File=example.log

log4j.appender.R.MaxFileSize=100KB
Keep one backup file
log4j.appender.R.MaxBackupIndex=1

log4j.appender.R.layout=org.apache.log4j.PatternLayout
log4j.appender.R.layout.ConversionPattern=%p %t %c - %m%n

The above script begins by configuring a ConsoleAppender and then a Rolling-
FileAppender. These appenders are respectively called stdout and R. The Pat-
ternLayout instance associated with stdout (the ConsoleAppender) is in-
structed to extract the file name and the line number of the logging request by virtue
of the %F and %L conversion specifiers. Running MyApp2 with this configuration
file will output the following on the console.

 INFO [main] (MyApp2.java:15) - Entering application.
DEBUG [main] (Foo.java:8) - Did it again!
 INFO [main] (MyApp2.java:18) - Exiting application.

In addition, since a second appender, named R, has been attached to the root logger.
Thus, output will also be directed to the example.log file, the target of R, the Roll-
ingFileAppender. This file will be rolled over when it reaches 100KB. When
rollover occurs, the old version of example.log is automatically moved to exam-
ple.log.1. The RollingFileAppender will be covered later the book.

Novice log4j users tend to forget that appenders are cumulative. By default, a logger
will log to the appenders attached to itself (if there are any) as well as all the ap-

MULTIPLE APPENDERS 43

penders attached to its ancestors. Thus, attaching the same appender to multiple log-
gers will cause logging output to be duplicated.

Example 3-9:Duplicate appenders (examples/chapter3/duplicate.properties)

log4j.debug=true
log4j.rootLogger=debug, CON
log4j.appender.CON=org.apache.log4j.ConsoleAppender
log4j.appender.CON.layout=org.apache.log4j.PatternLayout
log4j.appender.CON.layout.ConversionPattern=%r %p %t %c - %m%n

The CON appender is also attached to the "chapter3" logger. The
following directive does not set the level of "chapter3" logger by
leaving its level field empty.
log4j.logger.chapter3=,CON

Running MyApp2 with duplicate.properties will yield the following output.

log4j: Parsing for [root] with value=[debug, CON].
log4j: Level token is [debug].
log4j: Category root set to DEBUG
log4j: Parsing appender named "CON".
log4j: Parsing layout options for "CON".
log4j: Setting property [conversionPattern] to [%r %p %t %c -
%m%n].
log4j: End of parsing for "CON".
log4j: Parsed "CON" options.
log4j: Parsing for [chapter3] with value=[,CON].
log4j: Parsing appender named "CON".
log4j: Appender "CON" was already parsed.
log4j: Handling log4j.additivity.chapter3=[null]
log4j: Finished configuring.
0 INFO main chapter3.MyApp2 - Entering application.
0 INFO main chapter3.MyApp2 - Entering application.
0 DEBUG main chapter3.Foo - Did it again!
0 DEBUG main chapter3.Foo - Did it again!
0 INFO main chapter3.MyApp2 - Exiting application.
0 INFO main chapter3.MyApp2 - Exiting application.

Notice the duplicated output. The appender named CON is attached to two loggers,
to root and to “chapter3”. Since the root logger is the ancestor of all loggers and
“chapter3” is the parent of “chapter3.MyApp2” and “chapter3.Foo”, logging request
made with the latter two are output twice, once because CON is attached to “chap-
ter3” and once because it is attached to the root logger.

Assuredly, the purpose of appender additivity is not to trap for new users. It is a quite
handy log4j feature. For instance, one can configure logging such that only log mes-
sages above a certain threshold level appear on the console (for all loggers in the sys-

44 CHAPTER 3: CONFIGURATION SCRIPTS

tem) while messages only from some specific set of loggers flow into a specific ap-
pender.

Example 3-10: Better use of multiple appenders (examples/chapter3/restricted.properties)

log4j.debug=true
log4j.appender.CON=org.apache.log4j.ConsoleAppender
log4j.appender.CON.Threshold=INFO
log4j.appender.CON.layout=org.apache.log4j.PatternLayout
log4j.appender.CON.layout.ConversionPattern=%r %p [%t] %c - %m%n

log4j.appender.CH3=org.apache.log4j.FileAppender
log4j.appender.CH3.File=ch3restricted.log
log4j.appender.CH3.layout=org.apache.log4j.PatternLayout
log4j.appender.CH3.layout.ConversionPattern=%r %p %t %c - %m%n

log4j.rootLogger=debug, CON
log4j.logger.chapter3=INHERITED,CH3

In this example, the appender named CON will drop events below the INFO level be-
cause its threshold is set to INFO. As this appender is attached to the root logger and
by virtue of the appender additivity rule, it will service the events generated by all
loggers in the hierarchy, which are all below root by construction. The FileAp-
pender named CH3 will direct its output to the file ch3restricted.log in the current
directory. The CH3 appender is attached to the “chapter3” logger. For extra emphasis,
the “chapter3” logger has its level explicitly set to INHERITED or NULL which means
that it will inherit its level from higher in the hierarchy. Given that all non-root log-
gers have their level set to null by default, setting the level of the “chapter3” was not
absolutely necessary. To summarize, the console appender will log messages of level
INFO and above (for all loggers in the system) whereas only logging events (of all
levels) from under “chapter3” tree go into a file named ch3restricted.log.

To obtain these different logging behaviors we did not need to recompile any code.
For example, we could just as easily have logged to a UNIX Syslog daemon, redi-
rected output from the chapter3.Foo class (and only from that class) to an NT
Event logger, or forwarded logging events to a remote log4j server, which would log
according to local server policy, possibly by forwarding the log event to yet another
log4j server. Configuration scripts in property format (key=value) are quite easy to
write. Parsing them requires log4j and obviously the JDK. Configuration files in
XML format, which we are about to present, additionally require the presence of a
JAXP compatible XML parser. In exchange, they permit the representation of more
elaborate and powerful log4j configurations.

CONFIGURATION FILES IN XML 45

Configuration files in XML
As mentioned previously, log4j also supports configuration files written in XML
format. These configuration files are parsed by the org.apache.log4j.-
xml.DOMConfigurator. The MyApp3 application listed next uses the DOMCon-
figurator.

package chapter3;
import org.apache.log4j.Logger;
import org.apache.log4j.xml.DOMConfigurator;

public class MyApp3 {
 final static Logger logger = Logger.getLogger(MyApp3.class);

 public static void main(String[] args) {
 DOMConfigurator.configure(args[0]);

 logger.info("Entering application.");
 Foo foo = new Foo();
 foo.doIt();
 logger.info("Exiting application.");
 }
}

Notice the similarity of invoking the DOMConfigurator to invoking Property-
Configurator. The compilation MyApp3.java requires the presence of the JAXP
classes on the CLASSPATH. The execution of all the DOMConfigurator related ex-
amples require the presence of a JAXP compatible parser, e.g. crimson.jar or xer-
ces.jar. The partitioning of jar files into the abstract JAXP API and its implementing
parser depend on the parser family, e.g. crimson, Xerces, Xerces2, and also on the
exact version of the parser within the same family. Consult the documentation ac-
companying your JAXP compatible parser for details.

Before discussing the syntax of XML configuration files, below is an example that
configures log4j in the same as BasicConfigurator.configure() method or
the sample0.properties script in conjunction with PropertyConfigurator. Both
approaches were presented earlier.

Example 3-11:BasicConfigurator.configure() equivalent (examples/chapter3/sample0.xml)

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration xmlns:log4j='http://jakarta.apache.org/log4j/'>

 <appender name="STDOUT" class="org.apache.log4j.ConsoleAppender">
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%-4r [%t] %-5p %c %x - %m%n"/>

46 CHAPTER 3: CONFIGURATION SCRIPTS

 </layout>
 </appender>

 <root>
 <level value ="debug"/>
 <appender-ref ref="STDOUT"/>
 </root>
</log4j:configuration>

The above configuration script is available as sample0.xml under the exam-
ples/chapter3 directory. After ensuring that the current directory is $MAN-
UAL_HOME/examples, try executing the following command:

java chapter3.MyApp3 chapter3/sample0.xml

The output of this command is very similar to the output of MyApp1, except that
MyApp3 application references a logger called “chapter3.MyApp3” instead of “chap-
ter3.MyApp1”. The output will reflect this difference.

You can instruct log4j to output internal debugging messages on the console. This is
accomplished by the debug attribute within the <log4j:configuration> element.
As in:

<log4j:configuration debug="true"
 xmlns:log4j='http://jakarta.apache.org/log4j/'>
 ...
</log4j:configuration>

As surprising as it may seem, the log4j.dtd does not need to be placed in the same
directory as the XML file. In fact, it does not need to be placed anywhere. The
log4j.dtd is extracted from log4j.jar and handed to the XML parser. If you are inter-
ested in the details, this is accomplished by setting the systemID in the InputSource11
object that is passed to the parse method of a valid DocumentBuilder12 instance.

Syntax of XML scripts
The syntax of XML scripts is specified by the log4j.dtd. In case of doubt, it remains
the ultimate authority regarding the correct syntax. Instead of an unsavory listing of

11 InputSource class is part of the the org.xml.sax package.

12 DocumentBuilder class is part of the javax.xml.parsers package of the JAXP
API.

SYNTAX OF XML SCRIPTS 47

the log4j.dtd, we choose to present a more amenable and narrative description here.
The information you expect to find in XML script is similar to the information found
key/value scripts. Obviously, a configuration file written in XML, as all XML docu-
ments, must be well-formed. While reading the following syntax description, I en-
courage you to compare it with the examples found in sample0.xml presented above,
as well other XML configuration scripts supplied with this manual. The next few
pages present the elements recognized by the DOMConfigurator. These elements are
listed in a flat style without any form of rigid nesting.

• <log4j:configuration> element:

The document root in for log4j scripts is the <log4j:configuration> element
which is declared to be in the http://jakarta.apache.org/log4j/ namespace. This ele-
ment contains zero or more <renderer> elements, zero or more <appender> ele-
ments, zero or more <logger> elements and at most one <root> element, in that
order, as summarized in Figure 3-2 below.

Figure 3-2. The <log4j:configuration> element and its children.

The <configuration> element admits two attributes: threshold and debug. The
threshold attribute can take the case insensitive string values “all”, “debug”,
info”, “warn”, “error”, “fatal”, and “off”. As the name indicates, it sets the value of
the hierarchy-wide threshold. If unspecified, the hierarchy-wide threshold keeps its
existing value which is Level.ALL by default. The debug attribute can take the
values “true” or “false”. This attribute controls the internal logging feature of log4j.

The children of the <configuration> element are discussed next.

48 CHAPTER 3: CONFIGURATION SCRIPTS

• <renderer> element:

This element is empty; it has neither children nor body. However, it must contain
two attributes : renderedClass and renderingClass both of which are
required.

Figure 3-3: The <renderer> element.

• <appender> element:

This element admits two attributes name and class both of which are manda-
tory. The name attribute specifies the name of the appender whereas the class
attribute specifies the fully qualified name of the class of which the named ap-
pender will be an instance. The appender element contains zero or one <error-
Handler> elements, followed by zero or more <param> elements, followed by
zero or one <layout> elements, followed by zero or more <filter> elements,
and lastly zero or more <appender-ref> elements, as illustrated in Figure 3-4
below.

Figure 3-4. The <appender> element and its children.

• <errorHandler> element:

Each appender has an associated error handler to respond its error conditions. Er-
ror handlers will be discussed in the next chapter. The present description is lim-
ited to the syntax of the <errorHandler> element. The <errorHandler>
element admits a mandatory class attribute which corresponds to the fully

SYNTAX OF XML SCRIPTS 49

qualified name of the error handler implementation to instantiate. It also contains
zero or more <param> elements, followed by at most one <root-ref> element,
followed by zero or more <logger-ref> elements, and lastly zero or more
<appender-ref> elements, as illustrated in Figure 3-5 below.

Figure 3-5: The <errorHandler> element and its children.

The <root-ref> and <logger-ref> elements indicate the loggers where the
containing appender is attached to. The <appender-ref> element is a reference
to a secondary appender that can be used as a fallback appender when the primary
appender, i.e. the containing appender, fails.

• <param> element:

The <param> element appears as a child in a number of other elements such as
<appender>, <layout> and <filter>. It admits no child elements but takes
two mandatory attributes: name and value, which correspond to the property
name and value to set in the object associated with the parent element.

The options, a.k.a. properties, of appenders, layouts or filters are inferred dy-
namically using standard JavaBeans conventions. Any setter method taking a
single primitive java type, an Integer, a Long, a String or a Boolean pa-
rameter implies an option name. For example, given that the FileAppender
class contains setAppend(boolean), setBufferSize(int) and set-
File(String) as member methods, then it follows that Append, BufferSize
and File are all valid option names. Log4j can also deal with setter methods tak-
ing an org.apache.log4j.Level parameter. For example, since the
AppenderSkeleton class13 has setThreshold(Level) as a member method,

13 The AppenderSkeleton class is the base class for all appenders shipped in the official
log4j distribution.

50 CHAPTER 3: CONFIGURATION SCRIPTS

Threshold is a valid option for all log4j appenders extending the Appender-
Skeleton class.

• <layout> element:

The <layout> element takes a mandatory class attribute specifying the fully
qualified name of the class of which the associated layout object will be an in-
stance. It can have zero or more <param> elements as children. Similar to the
<param> elements contained in <appender> elements, the <param> elements
in <layout> element are interpreted as options for the layout instance.

Figure 3-6: The <layout> element and its children.

• <filter> element:

Zero or more filters can be attached to any appender. Filters will be discussed in later
chapters. The structure of a <filter> element is identical to the structure of a
<layout> element. The <filter> element takes a class attribute and contains
one or more <param> elements as children.

Figure 3-7: The <filter> element.

• <appender-ref> element:

This element allows referring to another appender by name. It admits the ref attrib-
ute which should match the name of an appender declared elsewhere within an <ap-
pender> element. The <appender-ref> element does not contain children.

Figure 3-8: The <appender-ref> element.

• <logger> element:

The <logger> element configures Logger instances. It takes exactly one man-
datory name attribute and an optional additivity attribute, which take val-

SYNTAX OF XML SCRIPTS 51

ues “true” or “false”. The <logger> element admits at most one <level> ele-
ment which is discussed next. The <logger> element may contain zero or more
<appender-ref> elements; each appender thus referenced is added to the
named logger. It is important to keep mind that each named logger that is de-
clared with a <logger> element first has all its appenders removed and only
then are the referenced appenders attached to it. In particular, if there are no ap-
pender references, then the named logger will lose all its appenders.

Figure 3-9: The <logger> element and its children.

• <level> element:

The <level> element is used to set logger levels. It admits two attributes
value and class. The value attribute can be one of the strings “DEBUG”,
“INFO”, WARN” “ERROR” or “FATAL”. The special case-insensitive value
“INHERITED”, or its synonym “NULL”, will force the level of the logger to be
inherited from higher up in the hierarchy. Note that the level of the root logger
cannot be inherited. If you set the level of a logger and later decide that it should
inherit its level, then you need to specify “INHERITED” or synonymously
“NULL” as the level value. The class attribute allows you to specify a custom
level where the value of the attribute is the fully qualified name of a custom level
class. The <level> element has no children.

Figure 3-10: The <level> element.

• <root> element:

The <root> element configures the root logger. It does not admit any attributes
because the additivity flag does not apply to the root logger. Moreover, since the
root logger cannot be named, it does not admit a name attribute either. The
<root> element admits at most one <level> element and zero or more <ap-
pender-ref> elements. Similar to the <logger> element, declaring a <root>
element will have the effect of first closing and detaching all its current append-
ers and only subsequently will referenced appenders, if any, be added. In particu-

52 CHAPTER 3: CONFIGURATION SCRIPTS

lar, if it has no appender references, then the root logger will lose all its append-
ers.

Figure 3-11: The <root> element:

Putting everything together we get:

SETTING A HIERARCHY-WIDE THRESHOLD (XML) 53

Figure 3-12: A summary of all the elements in a log4j configuration script.

Setting a hierarchy-wide threshold (XML)
As mentioned previously, the fastest but also the least flexible way of filtering log-
ging statements is by setting a hierarchy-wide threshold. It is quite straightforward to
set the repository-wide threshold in an XML configuration script. This is illustrated

54 CHAPTER 3: CONFIGURATION SCRIPTS

in the sample configuration file sample1.xml listed below. This file is also available
under the examples/chapter3/ directory.

Example 3-12:Setting a hierarchy-wide threshold (examples/chapter3/sample1.xml)

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration threshold="warn"
 xmlns:log4j='http://jakarta.apache.org/log4j/'>

 <appender name="STDOUT" class="org.apache.log4j.ConsoleAppender">
 <layout class="org.apache.log4j.SimpleLayout"/>
 </appender>

 <root>
 <appender-ref ref="STDOUT" />
 </root>
</log4j:configuration>

The above configuration file sets the hierarchy-wide threshold to warn. It then cre-
ates a ConsoleAppender called “STDOUT” associating it with a SimpleLayout.
“STDOUT” is then added to the root logger. Note that the root logger has its level set
to DEBUG by default. In the absence of other instructions, the level of the root logger,
that is DEBUG in this particular case, will be inherited by all other loggers. Given that
the hierarchy-wide threshold is set to level WARN and that MyApp3 does not contain
any warn(), error() or fatal() log statements, running the MyApp3 application
with the sample1.xml configuration script will not produce any logging output.

Setting the level of a logger (XML)
The contents of this section are very similar to the contents of previous section of the
same name describing configuration files in properties format. The major difference
is that it employs XML syntax instead of key=value syntax.

Setting the level of a logger is as simple as declaring it and setting its level, as the
next example illustrates. Suppose we are no longer interested in seeing any INFO or
DEBUG level logs from any component belonging to the chapter3 package. The fol-
lowing configuration file, available digitally as examples/chapter/sample2.xml,
shows how.

Example 3-13: Setting the level of a logger (examples/chapter/sample2.xml)

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

SETTING THE LEVEL OF A LOGGER (XML) 55

<log4j:configuration xmlns:log4j='http://jakarta.apache.org/log4j/'>

 <appender name="STDOUT" class="org.apache.log4j.ConsoleAppender">
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="[%t] %-5p %c - %m%n"/>
 </layout>
 </appender>

 <logger name="chapter3">
 <level value="OFF"/>
 </logger>

 <root>
 <!-- The following level element is not necessary since the -->
 <!-- level of the root level is set to DEBUG by default. -->
 <level value ="debug"/>
 <appender-ref ref="STDOUT" />
 </root>
</log4j:configuration>

This configuration file sets the level of the logger named “chapter3”to OFF. This log-
ger is the parent of the “chapter3.MyApp3” and “chapter3.Foo” loggers. As such,
these loggers will inherit the OFF level. Consequently, log requests of all levels, in-
cluding of level DEBUG and INFO, made to these loggers will be suppressed. In other
words, running the MyApp3 application with configuration file sample2xml will pro-
duce no output at all.

Changing the level of the “chapter3” logger to INFO will suppress DEBUG messages
but will allow INFO messages. Altering sample2.xml to

<logger name="chapter3">
 <level value="INFO"/>
</logger>

will yield:

[main] INFO chapter3.MyApp3 - Entering application.
[main] INFO chapter3.MyApp3 - Exiting application.

Obviously, you can configure the levels of as many loggers as we want. In the next
configuration file, listed next, we set the level of the “chapter3” logger to INFO but at
the same time set the level of the “chapter3.Foo” logger to DEBUG.

Example 3-14: Setting the level of multiple loggers (examples/chapter/sample3.xml)

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration xmlns:log4j='http://jakarta.apache.org/log4j/'>

56 CHAPTER 3: CONFIGURATION SCRIPTS

 <appender name="STDOUT" class="org.apache.log4j.ConsoleAppender">
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d %5p %c - %m%n"/>
 </layout>
 </appender>

 <logger name="chapter3">
 <level value="INFO"/>
 </logger>

 <logger name="chapter3.Foo">
 <level value="DEBUG"/>
 </logger>

 <root>
 <level value ="debug"/>
 <appender-ref ref="STDOUT" />
 </root>
</log4j:configuration>

Running MyAp3 with this configuration file will result in the following output on the
console. (The date will be different for obvious reasons.)

2002-05-16 23:51:51,893 INFO chapter3.MyApp3 - Entering application.
2002-05-16 23:51:51,893 DEBUG chapter3.Foo - Did it again!
2002-05-16 23:51:51,893 INFO chapter3.MyApp3 - Exiting application.

After DOMConfigurator configures log4j using the sample3xml file, the logger set-
tings, more specifically their levels, are summarized in the following table.

Logger name Assigned level Effective level
root DEBUG DEBUG

chapter3 INFO INFO
chapter3.MyApp2 null INFO

chapter3.Foo DEBUG DEBUG

It follows that the two logging statements of level INFO in the MyAp3 class are en-
abled while the debug statement in Foo.doIt() method will also prints without hin-
drance. Note that the level of the root logger is always set to a non-null value, which
is DEBUG by default. One rather important point to remember is that the logger-level
filter depends on the effective level of the logger being invoked, which can be quite
different from the level of the logger where the appenders it uses are attached. The
configuration file sample4xml is a case in point:

Example 3-15: 3-16 Independence of level settings (examples/chapter/sample4.xml)

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration xmlns:log4j='http://jakarta.apache.org/log4j/'>

SETTING THE THRESHOLD OF AN APPENDER (XML) 57

 <appender name="STDOUT" class="org.apache.log4j.ConsoleAppender">
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%p %c - %m%n"/>
 </layout>
 </appender>

 <logger name="chapter3">
 <level value="INFO"/>
 </logger>

 <root>
 <level value="OFF"/>
 <appender-ref ref="STDOUT" />
 </root>
</log4j:configuration>

The following table lists the loggers and their level setting after applying the sam-
ple4.xml configuration file.

Logger name Assigned level Effective level
Root OFF OFF

chapter3 INFO INFO
chapter3.MyApp2 null INFO

chapter3.Foo null INFO

The ConsoleAppender named “STDOUT,” the only configured appender in sam-
ple4.xml, is attached to the root logger whose level is set to OFF. However, running
MyApp3 with configuration script sample4.xml will output:

INFO chapter3.MyApp3 - Entering application.
INFO chapter3.MyApp3 - Exiting application.

Thus, the level of the root logger has no apparent effect because the loggers in
chapter3.MyApp3 and chapter3.Foo classes, namely “chapter3.MyApp3” and
“chapter3.Foo”, inherit their level from the “chapter3” logger which has its level set
to INFO. As noted previously, the “chapter3” logger exists by virtue of its declaration
in the configuration file – even if the Java source code does not directly refers to it.

Setting the threshold of an Appender (XML)
It is possible to limit the output of an appender by level. All appenders shipped with
the log4j distribution extend the AppenderSkeleton class which admits a property
called Threshold. Setting the Threshold option of an appender will filter out all log

58 CHAPTER 3: CONFIGURATION SCRIPTS

events with a level lower than the level of the threshold. For example, setting the
threshold of an appender to INFO will filter out DEBUG messages but will allow
WARN, ERROR and FATAL messages to pass, along with INFO messages. This is usu-
ally acceptable as there is little use for INFO messages without the surrounding
WARN, ERROR and FATAL messages. In a similar vein, setting the threshold of an ap-
pender to ERROR will filter out DEBUG, INFO and WARN messages but not ERROR or
FATAL messages. The configuration file sample5.xml gives an example for setting
the appender threshold.

Example 3-17: Setting the threshold of an appender (examples/chapter/sample5.xml)

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration xmlns:log4j='http://jakarta.apache.org/log4j/'>

 <appender name="CONSOLE" class="org.apache.log4j.ConsoleAppender">
 <param name="Threshold" value="INFO"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%-5p [%t] %c - %m%n"/>
 </layout>
 </appender>

 <root>
 <priority value="debug" />
 <appender-ref ref="CONSOLE" />
 </root>
</log4j:configuration>

Running MyAp3 with the sample5.xml configuration scripts yields:

INFO [main] chapter3.MyApp3 - Entering application.
INFO [main] chapter3.MyApp3 - Exiting application.

Note that since the debug request in the Foo.doIt() method is below the threshold
of the CONSOLE appender, it is dropped by that appender. Note that as far as the
logger named “chapter3.Foo” is concerned the log message was enabled. It is the
appender which decided to drop the message at the last minute.

If you must absolutely filter events by exact level match, then you can attach a Lev-
elMatchFilter to a given appender in order to filter out logging events by exact
level match. The LevelMatchFilter is an instance of a custom filter as discussed
in Chapter 6.

MULTIPLE APPENDERS (XML) 59

Multiple Appenders (XML)
Logging to multiple appenders is as easy as defining the various appenders and refer-
encing them in a logger, as the next configuration file illustrates:

Example 3-18: Defining multiple appenders (examples/chapter3/multiple.xml)

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration debug="true"
xmlns:log4j='http://jakarta.apache.org/log4j/'>

 <appender name="LIFE_CYCLE" class="org.apache.log4j.FileAppender">
 <param name="File" value="lifecyle.log"/>
 <param name="Threshold" value="INFO"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern"
 value="%d %5p [%t] %c (%F:%L) - %m%n"/>
 </layout>
 </appender>

 <appender name="ROLLING"
 class="org.apache.log4j.RollingFileAppender">
 <param name="File" value="sample.log"/>
 <param name="MaxFileSize" value="100KB"/>
 <param name="MaxBackupIndex" value="2"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%m%n"/>
 </layout>
 </appender>

 <root>
 <appender-ref ref="LIFE_CYCLE" />
 <appender-ref ref="ROLLING" />
 </root>
</log4j:configuration>

This configuration scripts defines two appenders called LIFE_CYCLE and ROLLING.
The LIFE_CYCLE appender logs to a file called lifecycle.log. It has its Threshold set
to the INFO level such that DEBUG messages sent to this appender will be dropped.
The layout for this appender is a PatternLayout that outputs the date, level (i.e.
priority), thread name, logger name, file name and line number where the log request
is located, the message and line separator character(s). The second appender called
ROLLING outputs to a file called sample.log which will be rolled over when it
reaches 100KB. The layout for this appender outputs only the message string fol-
lowed by a line separator.

60 CHAPTER 3: CONFIGURATION SCRIPTS

The appenders are attached to the root logger by referencing them by name within an
<appender-ref> element. Note that each appender has its own layout. Layouts are
usually not designed to be shared by multiple appenders. XML configuration files
nor properties configuration scripts do not provide any syntactical means for sharing
layouts.

New log4j users tend to forget that appenders are cumulative. By default, a logger
will log to the appenders attached to itself (if any) as well as all the appenders at-
tached to its ancestors. Thus, attaching the same appender to multiple loggers will
cause logging output to be duplicated.

Example 3-19: Duplicate appenders (examples/chapter3/duplicate.xml)

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration debug="true"
xmlns:log4j='http://jakarta.apache.org/log4j/'>

 <appender name="CON" class="org.apache.log4j.ConsoleAppender">
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%5p [%t] %c - %m%n"/>
 </layout>
 </appender>

 <logger name="chapter3">
 <appender-ref ref="CON" />
 </logger>

 <root>
 <priority value ="debug" />
 <appender-ref ref="CON" />
 </root>
</log4j:configuration>

Running MyApp3 with duplicate.xml will yield the following output.

log4j: Threshold ="null".
log4j: Retreiving an instance of org.apache.log4j.Logger.
log4j: Setting [chapter3] additivity to [true].
log4j: Class name: [org.apache.log4j.ConsoleAppender]
log4j: Parsing layout of class: "org.apache.log4j.PatternLayout"
log4j: Setting property [conversionPattern] to [%5p [%t] %c - %m%n].
log4j: Adding appender named [CON] to category [chapter3].
log4j: Level value for root is [debug].
log4j: root level set to DEBUG
log4j: Adding appender named [CON] to category [root].
 INFO [main] chapter3.MyApp3 - Entering application.
 INFO [main] chapter3.MyApp3 - Entering application.
DEBUG [main] chapter3.Foo - Did it again!

MULTIPLE APPENDERS (XML) 61

DEBUG [main] chapter3.Foo - Did it again!
 INFO [main] chapter3.MyApp3 - Exiting application.
 INFO [main] chapter3.MyApp3 - Exiting application.

Notice the duplicated output. The appender named CON is attached to two loggers,
to root and to "chapter3". Since the root logger is the ancestor of all loggers and
"chapter3" is the parent of "chapter3.MyApp2" and "chapter3.Foo", logging request
made with these loggers two are output twice, once because CON is attached to
"chapter3" and once because it is attached to "root".

Appender additivity is not intended as a trap for new users. It is a quite convenient
log4j feature. For instance, you can configure logging such that only log messages
above a certain threshold appear on the console (for all loggers in the system) while
messages only from some specific set of loggers flow into a specific appender.

Example 3-20: Better use of multiple appenders (examples/chapter3/restricted.properties)

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration debug="true"
 xmlns:log4j='http://jakarta.apache.org/log4j/'>

 <appender name="CON" class="org.apache.log4j.ConsoleAppender">
 <param name="Threshold" value="INFO"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%5p [%t] %c - %m%n"/>
 </layout>
 </appender>

 <appender name="CH3" class="org.apache.log4j.FileAppender">
 <param name="File" value="ch3restricted.log"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%r %p %t %c - %m%n"/>
 </layout>
 </appender>

 <logger name="chapter3">
 <appender-ref ref="CH3" />
 </logger>

 <root>
 <priority value ="debug" />
 <appender-ref ref="CON" />
 </root>
</log4j:configuration>

In this example, the console appender will log messages of level INFO and above (for
all loggers in the system) whereas only logs (of all levels) under the "chapter3" tree
go into the ch3restricted.log file. A more realistic example, the threshold of the CON

62 CHAPTER 3: CONFIGURATION SCRIPTS

appender would have been set to WARN as to restrict the console output to warnings
and error messages.

Reloading configuration files
Reloading of a configuration file or reconfiguration of log4j from a different configu-
ration file is allowed and is also thread safe. Contrary to expected behavior, when
reconfiguring, log4j configurators do not reset the existing (previous) configuration.
The rationale behind this somewhat unexpected behavior is to allow incremental
changes to the configuration, as the next example illustrates.

Example 3-21: Initial configuration (examples/chapter3/initial.xml)

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration xmlns:log4j='http://jakarta.apache.org/log4j/'>

 <appender name="A1" class="org.apache.log4j.FileAppender">
 <param name="File" value="A1.log">
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d %p [%t] %c - %m%n"/>
 </layout>
 </appender>

 <appender name="A2" class="org.apache.log4j.FileAppender">
 �param name="File" value="A2.log">
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%r %p [%t] %c - %m%n"/>
 </layout>
 </appender>

 <logger name="com.foo">
 <appender-ref ref="A2" />
 </logger>

 <logger name="com.wombat">
 <appender-ref ref="A2" />
 </logger>

 <root>
 <priority value ="debug" />
 <appender-ref ref="A1" />
 </root>
</log4j:configuration>

The initial.xml configuration file defines an appender A1 attached to the root logger,
a second appender A2 is attached to loggers "com.foo" and "com.wombat".

RELOADING CONFIGURATION FILES 63

The crucial point to remember is that invoking any of the log4j configurators does
not reset the previous configuration. Reconfiguration has obviously some effect on
the existing configuration. In particular, all appenders of any logger explicitly men-
tioned in the new configuration will be closed and removed from the logger. How-
ever, loggers which are not mentioned in the new configuration remain untouched.
All the more, appenders attached to such loggers remain attached after reconfigura-
tion.

For example, if an appender is attached to multiple loggers, it is possible for the ap-
pender to be closed during the reconfiguration but remain attached to a logger not
mentioned in the second configuration file. If after reconfiguration you try to log to
this closed appender, log4j will warn you about trying to log to a closed appender.

Example 3-22: Second configuration file

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration xmlns:log4j='http://jakarta.apache.org/log4j/'>
 <appender name="A1" class="org.apache.log4j.FileAppender">
 <param name="File" value="A1.log">
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%r %p [%t] %c - %m%n"/>
 </layout>
 </appender>

 <logger name="com.foo">
 <level value="WARN">
 </logger>

 <root>
 <priority value ="debug" />
 <appender-ref ref="A1" />
 </root>

</log4j:configuration>

When the second configuration file is read by the DOMConfigurator, since the root
logger is mentioned in the second file, all the appenders in the root are closed and
then removed. A new appender called A1 is then instantiated, configured and at-
tached to root.

Logger “com.foo” is mentioned in the second configuration file. Consequently, A2
will be closed and removed from “com.foo”. However, it will remain attached to
com.wombat. Trying to log with com.wombat logger will cause log4j to emit a warn-
ing.

64 CHAPTER 3: CONFIGURATION SCRIPTS

Embedded Libraries using log4j
In principle, configuring log4j is the responsibility of the end-user or generally the
application deployer. Whenever possible, a library should not try to configure log-
ging but leave it to the deployer. After all, logging output is useful only if someone
will take the time to look at it. If the end-user wishes to log, then she should control
the logging configuration. Nevertheless, it is helpful for the library developer to pro-
vide documentation on logging, preferably with complete working examples. The
names of the loggers that the library uses are prime candidates to include in such
documentation.

One rub with this policy, assuming the user does not configure log4j, is the dreaded
warning message log4j outputs on the console on the first logging call in your li-
brary.

log4j:WARN No appenders could be found for logger (some.logger.name).
log4j:WARN Please initialize the log4j system properly.

We have already encountered this message in Chapter 1. It is log4j's way of letting
you that it is not been configured. As legitimate as it is, this message may unneces-
sarily alarm the end-user, inducing her to believe that there is an anomaly in your
library or in the enclosing software being deployed.

Let Spookz Inc. be a company specialized in cryptographic software. The flagship
product of Spookz Inc. is a purportedly unbreakable encryption algorithm packaged
within their CryptoLib library. CryptoLib uses log4j for its logging. All loggers in
CryptoLib are children of the "com.spookz.cryptolib" logger. In line with our policy
of letting the end-user configure log4j, the engineers at Spookz decide to initially
turn off all logging from within their library.

void turnOffCryptoLogging() {
 Logger.getInstance("com.spookz.cryptolib").setLevel(Level.OFF);
}

This method is invoked very early in the game before other code in CryptoLib has a
chance to issue log requests. As long as the end-user does not configure log4j, all
logging requests in cryptolib will be suppressed, including the oppressive "Please
initialize log4j" warning message.

If on the contrary, the user decides to configure log4j, then there are two possible
outcomes depending on the order of log4j configuration by the user and cryptolib
turning off its logging.

If log4j configuration occurs after CryptoLib invokes turnOffCryptoLogging(),
then the configuration established by the deployer will be determining. The user can

EMBEDDED LIBRARIES USING LOG4J 65

easily turn on logging in CryptoLib, either programmatically or in a configuration
script.

This can accomplished by including the following directive in a configuration file
(properties format)

log4j.com.spookz.cryptolib=INHERITED

The same in XML is written as:

<logger name="com.spookz.cryptolib">
 <level name="INHERITED"/>
</logger>

These directives set the level of the "com.spookz.cryptolib" logger to null causing it
and its children to inherit their level from higher up in the logger hierarchy. The de-
ployer obviously has the possibility to configure the "com.spookz.cryptolib" logger
in different ways, as with any other logger.

In a less favorable turn of events, log4j configuration can occur before turnOf-
CryptoLogging method is called. In this case, CryptoLib effectively overrides the
deployer's intended logging configuration. This outcome is likely to occasion some
confusion and construed as being unfriendly. Fortunately, we can avoid this unde-
sired interference with a small modification to the turnOffCryptoLogging
method.

static void turnOffCryptoLogging() {
 Logger root = Logger.getRootLogger();
 boolean rootIsConfigured = root.getAllAppenders().hasMoreElements();
 if(!rootIsConfigured) {
 Logger.getInstance("com.spookz.cryptolib").setLevel(Level.OFF);
 }
}

In this modified version of turnOffCryptoLogging, we essentially check if log4j
has been already configured by inspecting the root logger to see whether it contains
any appenders. If it does, we consider log4j to be already configured and skip the
step of turning off logging for the "com.spookz.cryptolib" logger.

The inspection of the root logger is based on the documented properties of the ge-
tAllAppenders method. The Logger.getAllAppenders method returns all the
appenders attached to a logger as an Enumeration. In case there are no attached
appenders, it returns a NullEnumeration which contains no elements and whose
hasMoreElements method always returns false whereas non-empty enumerations

66 CHAPTER 3: CONFIGURATION SCRIPTS

are guaranteed to return true the first time their hasMoreElements method is
called.

This technique ensures that the configuration of log4j and turning off logging can be
called in any order without mutual interference. However, it assumes that any con-
figuration necessarily adds one or more appenders to the root logger which theoreti-
cally is not always the case. In the unlikely circumstance where log4j is configured
without adding at least one appender to the root logger, the appenders-in-root test
will not be effective. There is not much that can be done to prevent this, except
documenting your working assumptions, namely that at least one appender is as-
sumed to be added to the root logger. In the worst case, the CryptoLib will not pro-
duce any logging output even if the deployer's configuration has enabled CryptoLib
logging. As a workaround, she can add a NullAppender14 to the root logger. Nul-
lAppenders, as the name indicates, merely exist but do not output anything to any
device.

The examples for this chapter contain the java files exam-
ples/chapter3/CryptoLib.java and examples/chapter3/CryptoUser.java. These exam-
ples show how a library can coordinate its logging settings with those configured by
the end-user. The XML configurations user1.xml and user2.xml are also included.

Default Initialization
Log4j aims to be a universal logging package for the Java language. This claim uni-
versality prohibits making assumptions about the environment in which log4j is run-
ning. Assumptions that seem natural on most platforms can be invalid on others. For
example, the JVM on the AS/400 platform does not have a console even if most
other Java platforms do. Just as importantly, log4j may lack a mandate to write on
the console, which may be reserved for purposes other than logging. Thus, logging
to the console may not be always appropriate. Similarly, writing to files from an EJB
is forbidden according to the J2EE specification. Given that there is no such thing as
a universally available or accepted logging device, log4j does not define a default
appender. In essence, log4j must be configured prior to usage. This can be done ei-
ther programmatically or by invoking a configurator with an appropriate configura-
tion script.

However, some applications have multiple entry points such that it may be cumber-
some or even impossible for the user to configure log4j prior to usage. To address
this problem, log4j defines a default initialization procedure which configures log4j

14 The NullAppender class is defined in the org.apache.log4j.varia package.

DEFAULT INITIALIZATION 67

under well-defined conditions, under the control of the user. Default initialization is
performed when log4j classes are loaded into memory, more precisely within the
static initializer of the LogManager class. The Java language guarantees that the
static initializer of a class is called once and only once when loading the class into
memory. Since a class must be loaded into memory before usage of the class and
since the LogManager is directly or indirectly involved in the retrieval of all Log-
ger instances, it is guaranteed that default initialization will precede any logging
attempt.

Default log4j initialization procedure

The default initialization algorithm is invoked when the LogManager class is loaded
into memory. This class is guaranteed to be loaded before any logger can be used.
The exact initialization algorithm is defined as follows:

• If the log4j.defaultInitOverride system property is set to any other value
then "false", the default initialization procedure (this procedure) is skipped

• The value of the log4j.configuration system property defines the configura-
tion resource. The value of the log4j.configuration system property can be a
URL or a file expressed in a system dependent format.

• If the log4j.configuration is not defined, then configuration resource
log4j.xml is searched with the following algorithm

Under JDK 1.2 and later, search for the resource using the thread context class
loader. If that fails, attempt to locate the resource using the class loader that
loaded the log4j library. Make one last attempt by calling
ClassLoader.getSystemResource(resource) method, that is by using the system
class loader. The result of the search, if successful, is always a URL.

• If the resource log4j.xml cannot be located, then search for log4j.properties using
the same search algorithm.

• If the log4j.configuration system property was not defined and no resources
log4j.xml or log4j.properties could be found, then no default initialization can oc-
cur.

• Otherwise, if a configuration resource could be found, invoke the config-
ure(URL) method of the appropriate log4j configurator. If the configuration re-
source ends with an .xml extension the DOMConfigurator is used. Otherwise, the
PropertiesConfigurator is used. The user can optionally specify a custom

68 CHAPTER 3: CONFIGURATION SCRIPTS

configurator. The value of the log4j.configuratorClass system property is
taken as the fully qualified class name of the custom configurator. The custom
configurator must implement the Configurator interface.

NOTE The file log4j.xml is probed for in log4j version 1.2.7 and later. Previ-
ous log4j versions only probe for the file log4j.properties.

The MyApp4 application, listed next, does not explicitly configure log4j, relying in-
stead on default initialization.

Example 3-23: Application without explicit configuration (examples/chapter3/MyApp4)

package chapter3;
import org.apache.log4j.Logger;

public class MyApp4 {
 final static Logger logger = Logger.getLogger(MyApp4.class);

 public static void main(String[] args) {
 logger.info("Entering application.");
 Foo foo = new Foo();
 foo.doIt();
 logger.info("Exiting application.");
 }
}

Running MyApp4 without prior preparation will result in the following irritating but
familiar warning message:

log4j:WARN No appenders could be found for logger (chapter3.MyApp4).
log4j:WARN Please initialize the log4j system properly.

Default initialization takes place if the log4j.configuration system property is
set or the files log4j.xml or log4j.propertie are available on the classpath (or to the
thread context loader). Assuming MANUAL_HOME/examples/ directory is on the
classpath, copy any XML configuration script as MAN-
UAL_HOME/examples/log4j.xml. Similarly, you can copy a properties file as MAN-
UAL_HOME/examples/log4j.properties. Try running MyApp4 again. You should
notice the configuration file being picked up automatically.

It is a common mistake to add the configuration file to the classpath instead of the
directory where the configuration file is located. For instance, assuming the file
/foo/log4j.xml exists for the purposes of default initialization, adding /foo/log4j.xml
to the classpath is a mistake while adding /foo/ is correct.

LOG4J INITIALIZATION IN WEB CONTAINERS 69

We can force the default initialization procedure to consider a particular file with the
help of the log4j.configuration system property. As in,

java -Dlog4j.configuration=chapter3/defaultIni.xml chapter3.MyApp4

Note that the value of the log4j.configuration system property can be a URL.
As in,

java -Dlog4j.configuration=file:chapter3/defaultIni.xml chapter3.MyApp4

Log4j Initialization in Web Containers
The Java Servlet technology is the cornerstone of many server-side applications. For
those unfamiliar with Servlets I highly recommend Jason Hunter's book entitled
"Java Servlet Programming" from O'Reilly & Associates.

Although not explicitly stated in the Java Servlet 2.3 and Java Server Pages 1.2
specifications, most web containers will load the classes of a web-application in a
separate class loader. Moreover, per section SRV.3.7 of the specification, the con-
tainer is required to load the servlets and the classes that they may use in the scope of
a single class loader. In practice, this means that any utility classes of the web-
application will be loaded anew for each web-application. Thus, you may have mul-
tiple copies of log4j classes loaded simultaneously. Each such copy will go through
the default log4j initialization procedure.

It is important to know that different class loaders may load distinct copies of the
same class. These copies of the same class are considered as totally unrelated by the
JVM. Class loading is central but rather advanced Java topic. Some familiarity with
class loaders is necessary to the pursuit of this discussion. There are several dozen
tutorials on the subject of which I recommend the following:

• “The basics of Java class loaders” from http://www.javaworld.com/javaworld/
jw-10-1996/jw-10-indepth.html

• “Understanding Class.forName()” from http://www.javageeks.com/Papers/
ClassForName/index.html

• “EJB 2 and J2EE Packaging, Part II” from http://www.onjava.com/pub/a/onjava/
2001/07/25/ejb.html

Per section SRV.9.5 of the Java Servler specification, the web application class
loader is required to load any library JARs in the WEB-INF/lib directory. Moreover,
per section SRV.9.7.2, it is recommended classes packaged within the war file are

70 CHAPTER 3: CONFIGURATION SCRIPTS

loaded in preference to classes residing in container-wide library JARs. In particular,
Tomcat 4.0 has a class loader hierarchy which makes its own utility classes invisible
to web-applications.

Thus, in practice placing log4j-VERSION.jar in the WEB-INF/lib directory of your
web-application will cause log4j classes to be loaded/unloaded whenever your web-
application is loaded/unloaded. Moreover, each copy of the log4j classes will be
treated as a separate unrelated copy by the JVM. It follows that each of your web-
applications can live in its own log4j-logging universe.

Default Initialization under Tomcat
The default log4j initialization is particularly useful in web-server environments.
Under Tomcat 3.x and 4.x, you should place the log4j.xml or log4j.properties under
the WEB-INF/classes directory of your web-applications. Log4j will find the proper-
ties file and initialize itself. This is easy to do and works well.

As mentioned previously, you can also choose to set the log4j.configuration
system property before starting Tomcat. For Tomcat 3.x The TOMCAT_OPTS envi-
ronment variable is used to set command line options. For Tomcat 4.0, set the
CATALINA_OPTS environment variable instead of TOMCAT_OPTS.

Relative path configuration file (ProperyConfigurator)

The Unix shell command

 export TOMCAT_OPTS="-Dlog4j.configuration=foobar.txt"

tells log4j to use the file foobar.txt as the default configuration file. This file should
be place under the WEB-INF/classes directory of your web-application. The file will
be read using the PropertyConfigurator. Each web-application will use a differ-
ent default configuration file because each file is relative to a web-application.

Relative path configuration file (DOMConfigurator)

The Unix shell command

 export TOMCAT_OPTS="-Dlog4j.debug -Dlog4j.configuration=foobar.xml"

tells log4j to output log4j-internal debugging information for the list of searched lo-
cations and to use the file foobar.xml as the default configuration file. This file
should be place under the WEB-INF/classes directory of your web-application. Since
the file ends with a .xml extension, it will be parsed using the DOMConfigurator.

INITIALIZATION SERVLET 71

Each web-application will use a different default configuration file because each file
is relative to a web-application.

Absolute-path configuration file

The Windows shell command

 set TOMCAT_OPTS=-Dlog4j.configuration=file:/c:/foobar.lcf

tells log4j to use the file c:\foobar.xml as the default configuration file. The configu-
ration file is fully specified by the URL file:/c:/foobar.lcf. Thus, the same configura-
tion file will be used for all web-applications.

Different web-applications will load the log4j classes through their respective class
loaders. Thus, each image of the log4j environment will act independently and with-
out any mutual synchronization. This can lead to dangerous situations. For example,
if different web-applications define a FileAppender writing to an absolute-path file
will all write that file without any mutual-synchronization. The results are likely to
be less than satisfactory. It is your responsibility to make sure that log4j configura-
tions of different web-applications do not use the same underlying system resource.

More generally, appenders should not be sharing the same system resource. Any ap-
pender shipped with log4j is guaranteed to safely handle calls from multiple threads.
However, configuring one or more appenders to write to the same file or system re-
source is unsafe as there is not mutual synchronization between appenders even if
they are running under the same VM.

Initialization servlet
It is also possible to use a special servlet for log4j initialization. Here is an example,

Example 3-24: Initialization servlet (examples/chapter3/Log4jInitServlet.java)

package chapter3;

import org.apache.log4j.PropertyConfigurator;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.PrintWriter;
import java.io.IOException;

public class Log4jInitServlet extends HttpServlet {

 public void init() {

72 CHAPTER 3: CONFIGURATION SCRIPTS

 String prefix = getServletContext().getRealPath("/");
 String file = getInitParameter("log4j-init-file");
 // if the log4j-init-file is not set, then no point in trying
 if(file != null) {
 PropertyConfigurator.configure(prefix+file);
 }
 }

 public void doGet(HttpServletRequest req, HttpServletResponse res) {
 }
}

Define the following servlet in the web.xml file of your web-application.

 <servlet>
 <servlet-name>log4j-init</servlet-name>
 <servlet-class>chapter3.Log4jInitServlet</servlet-class>

 <init-param>
 <param-name>log4j-init-file</param-name>
 <param-value>WEB-INF/classes/log4j.properties</param-value>
 </init-param>

 <load-on-startup>1</load-on-startup>
 </servlet>

Writing an initialization servlet is the most flexible way for initializing log4j as there
are no constraints on the amount of code you can place in the init() method of the
servlet.

Log4j Initialization in Application Servers
Log4j is known to work well under most Application Servers although you should be
aware of the classical EJB restrictions. In particular, your class-wide loggers should
be final static. As in,

public class SomeEJB extends EntityBean {

 final static Logger logger = Logger.gerLogger(SomeEJB.class);
 ...
}

You should also avoid using the FileAppender because it writes directly to a file.
Although writing to files does not seem to cause problems in most application serv-
ers, it is explicitly forbidden by the EJB specification. You should consider the
SocketAppender or JMSAppender instead. Similarly, avoid using the AsyncAp-

LOG4J INITIALIZATION IN APPLICATION SERVERS 73

pender because it creates a thread of its own which is forbidden by the EJB
specification.

JBoss

As of version 2.4, JBoss uses log4j for its own logging. Consequently, your own
EJBs and web applications will automatically inherit JBoss' log4j configuration.

More often than not you to keep your application's logs separate from the Applica-
tion Server log. JBoss adopting log4j is a step backward in some sense. There are a
number of possible solutions.

The easiest solution is to modify jboss' log4j configuration file. Assuming all your
classes live under “com.wombat” package or in packages under com.wombat, con-
figuring a logger called “com.wombat” and setting its level and additivity will isolate
all loggers under it, effectively isolating logging from your code from that of JBoss.
For this approach to work properly your code should not make use of the loggers that
JBoss uses such as those under “org.jboss” or the root logger.

Weblogic 6.x

One simple but somewhat inflexible approach for using log4j under Weblogic is to
add log4j.jar to the system classpath before launching Weblogic server. This is guar-
anteed to work except that all applications will be sharing the same instance of the
log4j classes and consequently share the same log4j configuration. It is also possible
to have Weblogic load a separate instance of log4j classes per application. Although
not difficult this approach requires some rudimentary understanding of the way We-
blogic loads your applications.

Contrary to version 5.x, when WebLogic version 6.x deploys an application, it cre-
ates three class loaders: one for EJBs, one for Web applications and one for JSP files.
The first, the so called "EJB class loader" is a child of the system class loader. The
second, the so called "Web-application" class loader is a child of the EJB class
loader. The third class loader, the JSP class loader, is the child of the second. Thus,
classes in the web-application can access the classes in your enterprise beans but not
vice versa. See Weblogic Class loader Overview for more details.

As far as I know, contrary to Servlet Containers which are required to load classes
and jar files located under the /WEB-INF/classes and /WEB-INF/lib directory, there
is no standard location that the EJB container will search in order to load your utility
classes. As mentioned earlier, one solution to circumvent this problem is to add log4j
to the Java system classpath with the aforementioned limitations. Another approach

74 CHAPTER 3: CONFIGURATION SCRIPTS

is to include log4j.jar within your EJB jar files. This has the distinct disadvantage of
bloat.

There is a better and quite elegant approach. Version 1.2 of the Java platform, added
support for bundled extensions for jar files. A jar file can specify the relative URLs
of extensions and libraries that it requires via the "Class-Path" manifest attribute.
Relative URLs ending with '/' are assumed to refer to directories.

For example, adding the line

Class-Path: lib/log4j-VERSION.jar lib/

to the manifest file of your application's ear file or your EJB jar files will allow log4j
classes to be loaded from lib/log4j-VERSION.jar relative to the ear or jar file. Placing
log4j.xml or log4j.properties in the lib/ directory will let log4j find the properties
configuration file and auto-initialize.

IBM Websphere

See the Chapter 13 of IBM Redbook "WebSphere Version 4 Application Develop-
ment Handbook" for a discussion on using log4j under WebSphere.

Though the Redbook is undoubtedly motivated by the noblest intentions, I strongly
discourage you from adopting its initialization wrapper (LogHelper) approach. That
particular wrapper solution is highly intrusive and goes against the separation of us-
age and configuration principle. This approach unfortunately continues to be occa-
sionally suggested by well-meaning users.

LOG4J INITIALIZATION IN APPLICATION SERVERS 75

4.Appenders

There is so much to tell about the Western country in that day
that it is hard to know where to start. One thing sets off a hun-
dred others. The problem is to decide which one to tell first.

John Steinbeck, East of Eden

Log4j delegates the task of writing a logging event to appenders. Appenders must
implement the org.apache.log4j.Appender interface. The salient methods of
this interface are summarized below (getter methods omitted):

package org.apache.log4j;

public interface Appender {
 void addFilter(Filter newFilter);
 void clearFilters();
 void close();
 void doAppend(LoggingEvent event);
 boolean requiresLayout();
 void setErrorHandler(ErrorHandler errorHandler);
 void setLayout(Layout layout);
 void setName(String name);
}

Most of the methods in the Appender interface are made of setter and getter methods.
A notable exception is the doAppend method taking a LoggingEvent instance as
its only parameter. This method is perhaps the most important in the log4j frame-
work. It is responsible for outputting the logging event in a suitable format to the ap-
propriate output device. Appenders are named entities ensuring that they can be ref-
erenced by name, a quality confirmed to be especially relevant in configuration
scripts. All appenders must have an ErrorHandler that is responsible for reacting
to error conditions. An appender can contain multiple filters, each of which is added

76 CHAPTER 4: APPENDERS

by invoking the addFilter method. Filters are discussed in detail in a following
chapter.

Appenders are ultimately responsible for outputting logging events. However, they
may delegate the actual formatting of the event to a Layout object. Each layout is
associated with one and only one appender, referred to as the containing appender.
Note some appenders have built-in or fixed event formats, such that they do not re-
quire or contain a layout. For example, the SocketAppender and JMSAppender
simply serialize LoggingEvent objects before transmitting them over the wire. De-
velopers of log4j custom appenders should make sure that any custom appender that
does not require a layout returns false in its requiresLayout method. Failure to
do so will cause log4j configurators (e.g. DOMConfigurator) to complain about
missing layout information even if the custom appender does not need a layout.

AppenderSkeleton
The AppenderSkeleton class is an abstract class. It implements functionality
shared by all appenders, such as methods for getting or setting their name, their
threshold, their layout, their filters and their error handler. It is the super-class of all
appenders shipped with log4j. Although an abstract class, AppenderSkeleton ac-
tually implements the doAppend() method in the Append interface. Perhaps the
clearest way to discuss AppenderSkeleton class is to present actual source code.

 public synchronized void doAppend(LoggingEvent event) {
 if(closed) {
 LogLog.error("Attempted to append to closed appender ["
 +name+"].");
 return;
 }
 if(!isAsSevereAsThreshold(event.level)) {
 return;
 }
 Filter f = this.headFilter;
 FILTER_LOOP:
 while(f != null) {
 switch(f.decide(event)) {
 case Filter.DENY: return;
 case Filter.ACCEPT: break FILTER_LOOP;
 case Filter.NEUTRAL: f = f.next;
 }
 }
 this.append(event);
 }

APPENDERSKELETON 77

This implementation of the doAppend method is synchronized. It follows that log-
ging to the same appender from different threads is safe. While a thread, say T, is
executing the doAppend method, subsequent calls by other threads are queued until T
leaves the doAppend method; ensuring that T has exclusive access.

The first statement in the doAppend method checks whether the "closed" field is
true. If it is, doAppend will output a warning message on the console and return. In
other words, once closed, it is impossible to write to a closed appender. Sub-classes
of AppenderSkeleton are required to set the boolean variable "closed" to true
when their close() method is invoked. The next if statement checks whether the
log event is below the threshold of the appender. If so, the method returns without
further processing. Next, the method loops through the filters attached to the ap-
pender. Depending on the decision made by the filters in the filter chain, events can
be denied or alternatively accepted. In the absence of a decision by the filter chain,
events are accepted by default.

78 CHAPTER 4: APPENDERS

<<interface>>
Appender

 addFilter(Filter)
 clearFilters()
 close()
 doAppend(LoggingEvent)
 setErrorHandler(ErrorHandler)
 setLayout(Layout)
 setName(in String)

<<abstract>>
AppenderSkeleton

+doAppend(LoggingEvent)
+setThreshold(Level)

<<abstract>>
Layout

 format(LoggingEvent): String

<<abstract>>
Filter

+decide(event:LoggingEvent): int

filter chain

<<interface>>
OptionHander

+activateOptions()

<<interface>>
ErrorHandler

1

1

Figure 4-1: Simplified UML class diagram of AppenderSkeleton class

The simplified UML class diagram in Figure 4-1 illustrates AppenderSkeleton's
relation to other classes, omitting all class attributes and getter methods. Appenders
can delegate the processing of error conditions to an ErrorHandler object. By de-
fault, the AppenderSkeleton sets the error handler to an OnceOnlyErrorHan-
dler which prints a single warning message on the console–the first error is reported
while subsequent errors are ignored.

Note that AppenderSkeleton also implements the OptionHandler interface.
This interface boasts a single method, namely activateOptions(). After setting
all the options of an appender, a configurator calls this method to signal the appender
to bind or activate its options. Indeed, depending on the appender, certain options
cannot be activated because of interferences with other options. For example, since
file creation depends on truncation mode, FileAppender cannot act on the value of
its File option until the value of the Append option is also known for certain.

WRITERAPPENDER 79

The term option or property is reserved for named attributes that are inferred dy-
namically inferred using JavaBeans introspection. See also Q 10.10 of the FAQ on
page 168. AppenderSkeleton offers just one option albeit an important one.

Option Name Type Description
Threshold Level If the Threshold option is set, events below the threshold

level are ignored by the appender. In configuration scripts
level values can be one of the case insensitive strings
"ALL", "DEBUG", "INFO", WARN", "ERROR", FA-
TAL, "OFF" or a custom level value. A custom level
value can be specified in the form "level#classname". The
standard level strings are case insensitive contrary to the
classname part of a custom level.

By default, the Thresold option is set to null.

The Threshold option is inherited by all AppenderSkeleton derived classes.

WriterAppender
WriterAppender appends events to a java.io.Writer. This class provides basic
services that other appenders build upon. Users do not usually instantiate Writer-
Appender objects directly. Since java.io.Writer type cannot be mapped to a
string, there is no way in a configuration script to specify the target Writer object.
In other words, you cannot configure a WriterAppender from a script. This obvi-
ously does mean that WriterAppender does not possess configurable options,
which we describe next.

Option Name Type Description
Encoding String The encoding specifies the method of conversion be-

tween 16-bit Unicode characters into raw 8-bit bytes.
This appender will use the local platform’s default
encoding unless you specify otherwise using the En-
coding option. According to the java.lang package
documentation, acceptable values are dependent on
the VM implementation although all implementations
are required to support at least the following encod-
ings: “US-ASCII”, “ISO-8859-1”, “UTF-8”, “UTF-
16BE”, “UTF-16LE” and “UTF-16”.

By default, the Encoding option is null such that
the platform’s default encoding is used.

80 CHAPTER 4: APPENDERS

ImmediateFlush boolean If set to true, each write of a LoggingEvent is fol-
lowed by a flush operation on the underlying Writer
object. Conversely, if the option is set to false, each
write will not be followed by a flush. In general, this
improves logging throughput by roughly 15%. The
downside is that if the application exits abruptly the
unwritten characters buffered inside Writer might be
lost. This can be particularly troublesome as these
unwritten characters may contain crucial information
needed in identifying the reasons behind a crash.15

By default, the ImmediateFlush option is set to
true.

Threshold Level See options for AppenderSkeleton.

In general, if you disable immediate flushing, make sure to flush output streams
when your application exits, even peacefully. Otherwise, log messages are certain to
be lost as the next example illustrates.

Example 4-1: Exiting an application without flushing (examples/chapter4/ExitWoes1.java)

package chapter4;

import org.apache.log4j.*;
import java.io.*;

/**
 * A simple application that illustrates loss of logging data when
 * exiting an application without flushing i/o buffers.
 * */
public class ExitWoes1 {

 public static void main(String argv[]) throws Exception {

 WriterAppender writerAppender = new WriterAppender();
 writerAppender.setLayout(new SimpleLayout());
 OutputStream os = new FileOutputStream("exitWoes1.log");
 writerAppender.setWriter(new OutputStreamWriter(os));
 writerAppender.setImmediateFlush(false);
 writerAppender.activateOptions();

 Logger logger = Logger.getLogger(ExitWoes1.class);
 logger.addAppender(writerAppender);

15 I very much doubt that a black box on an airplane uses buffered I/O to persist data.

WRITERAPPENDER 81

 logger.debug("Hello world.");
 }
}

This example creates a WriterAppender that uses an OutputStreamWriter
wrapping a FileOutputStream as its underlying Writer object with immediate
flushing disabled. It then attaches this appender to a logger and proceeds to log a sin-
gle debug message. According to OutputStreamWriter javadocs each invocation
of a write() method causes the encoding converter to be invoked on the given charac-
ter(s). The resulting bytes are accumulated in a buffer before being written to the un-
derlying output stream. As astonishing as this may seem, running ExitWoes1 will not
produce any output in the file exitWoes1.log because the Java VM will not flush ex-
isting output streams when it exits. Calling the shutdown() method of a Logger-
Repository ensures that all appenders in the hierarchy are closed and their buffers
are flushed. For most applications this is as simple as including the following state-
ment before exiting the application.

LogManager.getLoggerRepository().shutdown();

See the file examples/chapter4/ExitWoes2.java for example usage.

The WriterAppender is the superclass of four other appenders, namely Con-
soleAppender, FileAppender which in turn is the superclass of Rolling-
FileAppender and DailyRollingFileAppender. Figure 4-2 illustrates the class
diagram for WriterAppender and its subclasses.

82 CHAPTER 4: APPENDERS

<<interface>>
Appender

<<abstract>>
AppenderSkeleton

+setThreshold(Level)

WriterAppender
+setEncoding(String)
+setImmediateFlush(boolean)

ConsoleAppender
+setTarget(String)

FileAppender
+setAppend(boolean)
+setFile(String)
+setBufferedIO(boolean)
+setBufferSize(int)

RollingFileAppender
+setMaxBackupIndex(int)
+setMaxFileSize(String)

DailyRollingFileAppender
+setDatePattern(String)

Figure 4-2: Simplified class diagram for WriterAppender and its derived classes.

ConsoleAppender
The ConsoleAppender, as the name indicates, appends on the console, or more
precisely on System.out or System.err, formatting events with a layout specified
by the user. The default target is System.out. Both of System.out and Sys-
tem.err are java.io.PrintStream objects. Consequently, they are wrapped in-
side an OutputStreamWriter which buffers i/o operations but not character con-
versions.

Option Name Type Description
Encoding String See WriterAppender options.
ImmediateFlush boolean There is not much sense in buffered console i/o, so

leaving this option at its default (true) is usually ap-

 83

propriate. See also WriterAppender options for
more details.

Target String One of the String values "System.out" or "Sys-
tem.err". The default target is System.out.

Threshold Level See AppenderSkeleton options.

FileAppender
The FileAppender, a subclass of WriterAppender, appends log events into a
file. The file is specified by the File option. If the file already exists, it is either ap-
pended to or truncated depending on the value of the Append option. It uses a
FileOutputStream which is wrapped by an OutputStreamWriter which buffer
i/o operations but not character conversions. To optimize character conversions you
can set the BufferedIO option to true which effectively wraps the Output-
StreamWriter with a BufferedWriter. Options for FileAppender are summa-
rized below.

Option Name Type Description
Append Boolean If true, events are appended at the end of an existing

file. Otherwise, if Append is false, any existing
file is truncated. This option is set to true by default.

Encoding String See WriterAppender options.
BufferedIO Boolean This option is set to false by default. If set to true,

the underlying OutputStreamWriter is wrapped
by a BufferedWriter object. Setting BufferedIO
to true automatically sets ImmediateFlush options
to false.

The name BufferedIO is misleading because buff-
ered IO is already supported by OutputStream-
Writer. Setting BufferedIO to true has effect of
buffering i/o as well as character to raw byte conver-
sions, saving a few CPU cycles in the process.

BufferSize int Size of BufferedWriter object's buffer; default
value is 8192.

File String The name of the file to write to. If the file does not
exist, it is created.

On the Windows platform users frequently forget to

84 CHAPTER 4: APPENDERS

escape back slashes. For example, the value
"c:\temp\test.log" is not likely to be interpreted prop-
erly as '\t' is an escape sequence interpreted as a sin-
gle tab character (\u0009). Correct values can be
specified as c:/temp/test.log or alternatively as
c:\\temp\\test.log.

The File option has no default value.

ImmediateFlush Boolean See WriterAppender options.
Threshold Level See AppenderSkeleton options.

By default, FileAppender performs a flush operation on the after writing each
event, ensuring that each event is immediately written to disk. Setting the Immedi-
ateFlush option to false can drastically reduce i/o activity by letting Output-
StreamWriter buffer bytes before writing them on disk. For short messages, 2 or 3
fold increases in logging throughput, i.e. the number of logs per unit of time, can be
observed. For longer messages, the throughput gains are somewhat less, and range
between 1.4 and 2. Enabling the BufferedIO option, that is buffering character to
byte conversions, increases performance by an additional 10% to 40% compared to
only disk i/o buffering (ImmediateFlush=false). Performance varies somewhat de-
pending on the host machine as well as JDK version. Throughput measurements are
based on the chapter4.IO application. See the file examples/chapter4/IO.java for
source code.

RollingFileAppender
RollingFileAppender extends FileAppender by limiting the size of log files to
some user specified length. Logging output is written to the file name specified by
the File option. When the log file reaches the specified size, it is rolled over: it is re-
named by appending ".1" to the file name. If a “.1” file exists, it is first renamed to
“.2” and so on. For example, if the File option is set to wombat.log, then wombat.log
will be renamed as wombat.log.1. Any existing wombat.log.1 file is renamed as
wombat.log.2, any previously existing wombat.log.2 file is renamed to wombat.log.3
and so on, until MaxBackupIndex. For instance, assuming MaxBackupIndex is set
to 4, wombat.log.4 is simply deleted without further cascading.

Thus, in addition to the FileAppender options, RollingFileAppender has two addi-
tional MaxFileSize and MaxBackupIndex, as summarized below.

Option Name Type Description
Append Boolean See FileAppender options.
Encoding String See WriterAppender options.

ROLLINGFILEAPPENDER 85

BufferedIO Boolean See FileAppender options.
BufferSize int See FileAppender options.
File String See FileAppender options.
ImmediateFlush Boolean See WriterAppender options.
MaxBackupIndex int The MaxBackupIndex option determines the num-

ber of previously rolled files to preserve This option
takes a positive integer value. If set to zero, then no
roll over occurs and the log file is simply truncated
when it reaches MaxFileSize. This option is set to 1
by default. For efficiency reasons, the value of the
MaxBackupIndex option should not surpass 10.
Consider increasing MaxFileSize instead of Max-
BackupIndex.

MaxFileSize String The MaxFileSize option takes a String value rep-
resenting a long integer in the range 0 - 263. You can
specify the value with the suffixes "KB", "MB" or
"GB" so that the integer is interpreted as being ex-
pressed respectively in kilobytes, megabytes or giga-
bytes. For example, the value "10KB" will be inter-
preted as 10240.

Rollover occurs when the log file reaches MaxFile-
Size. Note that since the last log event is written en-
tirely before a roll over is triggered, actual files are
usually a tad larger than the value of MaxFileSize.

The default value of this option is 10MB.

Threshold Level See AppenderSkeleton options.

A simple example, chapter4.Rolling, is included under the examples/chapter4/ direc-
tory. It configures log4j by reading a configuration file in either properties or XML
format, and proceeds to loop until log events in a number specified by the user are
generated. The user should consult the configuration files rolling.properties and roll-
ing.xml included in the same directory for short examples of RollingFileAp-
pender configuration.

Using RollingFileAppender system administrators can control the size of log
files. Understandably, volume is not a common criterion for the organization of log
files; most system administrators prefer to structure log files by date.

86 CHAPTER 4: APPENDERS

DailyRollingFileAppender
DailyRollingFileAppender extends FileAppender rolling files at a user cho-
sen time intervals. The rolling schedule is specified by the DatePattern option. This
pattern should follow the java.text.SimpleDateFormat conventions. In particu-
lar, you must escape literal text within a pair of single quotes. A formatted version of
the date pattern is used as the suffix for the rolled file name. For example, if the File
option is set to /foo/bar.log and the DatePattern set to '.'yyyy-MM-dd, then at mid-
night 2002-06-19, the logging file /foo/bar.log will be copied to /foo/bar.log.2002-
06-19 and logging for 2001-06-20 will continue in /foo/bar.log until it is also rolled
over the next day.

One can specify monthly, weekly, half-daily, daily, hourly, or even minutely rollover
schedules. The table below lists various DatePattern values as well as the resulting
rollover intervals and file names.

DatePattern Result
.yyyy-MM Rollover at the beginning of each month.

Example: Assuming the first day of the week is Sunday, at
Sunday 00:00, March 25th, 2001, /foo/bar.log will be
copied to /foo/bar.log.2001-03. Logging for the
month of April will be output to /foo/bar.log until it
rolls over at the beginning of May.

.yyyy-ww Rollover at the first day of each week. The first day of the
week depends on the locale.

Example: Assuming the first day of the week is Sunday, on
Saturday midnight, June 9th 2000, the file /foo/bar.log will
be copied to /foo/bar.log.2001-23. Logging for the 24th
week of 2002 will be output to /foo/bar.log until it is
rolled over the next week.

.yyyy-MM-dd Rollover at midnight each day.

Example: At midnight, on March 9th, 2002,
/foo/bar.log will be copied to /foo/bar.log.2001-
03-08. Logging for the 9th day of March will be output to
/foo/bar.log until it is rolled over at the start of the next
day.

.yyyy-MM-dd-a Rollover at midnight and midday of each day.

Example: At noon, on March 9th, 2002, /foo/bar.log
will be copied to /foo/bar.log.2002-03-09-AM. Log-
ging for the afternoon of the 9th will be output to

DAILYROLLINGFILEAPPENDER 87

/foo/bar.log until it is rolled over at midnight.
.yyyy-MM-dd-HH Rollover at the top of every hour.

Example: At approximately 11:00,000, on March 9th, 2002,
/foo/bar.log will be copied to /foo/bar.log.2002-
03-09-10. Logging for the 11th hour of the 9th of March
will be output to /foo/bar.log until it is rolled over at the
beginning of the next hour.

.yyyy-MM-dd-HH-mm Rollover at the beginning of every minute.

Example: At approximately 11:23.000 o'clock on March
9th, 2002, /foo/bar.log will be copied to
/foo/bar.log.2002-03-09-11-22. Logging during
11:23, that is one minute, will be output to /foo/bar.log
until it is rolled over at start of the next minute.

Thus, the DatePattern serves two purposes. First, by studying the pattern log4j com-
putes the requested rollover periodicity. Second, it uses the pattern as the suffix for
rolled files. It is entirely possible for two different date patterns to specify the same
periodicity. The date patterns ".yyyy-MM" and "–yyyy@MM" both specify monthly
rollover periodicity, although the rolled files will carry different suffixes.

Any characters in the pattern outside the ranges ['a'..'z'] and ['A'..'Z'] will be treated as
quoted text. For instance, characters like '.', ' ', '#' and '@' will appear in the resulting
time text even when they are not embraced within single quotes. Nevertheless, avoid
using the colon ":" character anywhere within the DatePattern option. The text be-
fore the colon is interpreted as the protocol specification of a URL, which is most
probably not what you intend. The slash "/" character, a common date field separator,
must also be avoided. It is taken as a file separator causing the rollover operation to
fail because the target file cannot be created. Although less common, the backslash
character "\" is equally troublesome.

The DailyRollingFileAppender adds just one option, namely the DatePattern
option, to the list of options supported by FileAppender. This is summarized in the
table below.

Option Name Type Description
Append Boolean See FileAppender options.
DatePattern String The DatePattern option control the rollover fre-

quency as the as the suffix of the rolled over log files.

88 CHAPTER 4: APPENDERS

The pattern should follow the conventions of the
java.text.SimpleDateFormat class. By default
the DatePattern option is set to '.'yyyy-MM-dd
(daily rollover).

Encoding String See WriterAppender options.
BufferedIO Boolean See FileAppender options.
BufferSize int See FileAppender options.
File String See FileAppender options.
ImmediateFlush Boolean See WriterAppender options.
Threshold Level See AppenderSkeleton options.

A simple example, chapter4.Periodic, is included under the examples/chapter4/ di-
rectory. It configures log4j by reading a configuration file in either properties or
XML format, and then enters an infinite loop generating one log event every 120
seconds. Included in the same directory, the user shall find sample configuration files
periodicX.properties and periodicX.xml, with X representing an integer in the range
1-3.

SocketAppender
The appenders covered this far were only able to log to local resources. In contrast,
the SocketAppender is designed to log to a remote entity by transmitting serialized
LoggingEvent objects over the wire. Remote logging is non-intrusive as far as the
logging event is concerned. On the receiving end, after de-serialization, the event can
be logged as if it were generated locally. Multiple SocketAppender running of dif-
ferent machines can direct their logging output to a central log server. SocketAp-
pender does not use a layout because it sends serialized events to the remote server
host instead. SocketAppender operates above the Transmission Control Protocol
(TCP) layer which provides a reliable, sequenced, flow-controlled end-to-end octet
stream. Consequently, if the remote server is reachable, then log events will eventu-
ally arrive there. Otherwise, if the remote server is down or unreachable, the logging
events are simply dropped. If and when the server comes back up, then event trans-
mission is resumed transparently. This transparent reconnection is performed by a
connector thread which periodically attempts to connect to the server.

Logging events are automatically buffered by the native TCP implementation. This
means that if the link to server is slow but still faster than the rate of (log) event pro-
duction by the client, the client will not be affected by the slow network connection.
However, if the network connection is slower then the rate of event production, then
the client can only progress at the network rate. In particular, if the network link to
the server is down, the client will be blocked. Alternatively, if the network link is up,

SOCKETAPPENDER 89

but the server is down, the client will not be blocked when making log requests al-
though the log events will be lost due to server unavailability.

Even if a SocketAppender is no longer attached to any logger, it will not be gar-
bage collected in the presence of a connector thread. A connector thread exists only
if the connection to the server is down. To avoid this garbage collection problem, you
should close() the SocketAppender explicitly. Long lived applications which cre-
ate/destroy many SocketAppender instances should be aware of this garbage col-
lection problem. Most other applications can safely ignore it. If the JVM hosting the
SocketAppender exits before the SocketAppender is closed either explicitly or
subsequent to garbage collection, then there might be untransmitted data in the pipe
which may be lost. This is a common problem on Windows based systems. To avoid
lost data, it is usually sufficient to close() the SocketAppender either explicitly
or by calling the LogManager.shutdown() method before exiting the application.

The remote server is identified by the RemoteHost and Port options. SocketAp-
pender options are listed in the following table.

Option Name Type Description
LocationInfo boolean The LocationInfo option takes a boolean value. If

true, the information sent to the remote host will
include location information. By default no loca-
tion information is sent to the server.

Port int The port number of the remote server.
ReconnectionDelay int The ReconnectionDelay option takes a positive

integer representing the number of milliseconds to
wait between each failed connection attempt to
the server. The default value of this option is
30’000 which corresponds to 30 seconds. Setting
this option to zero turns off reconnection capabil-
ity. Note that during successful connection no
connector thread exists.

RemoteHost String The host name of the server.
Threshold Level See AppenderSkeleton options.

Log4j includes a simple log server application, org.apache.log4j.net.Simple-
SocketServer that can service multiple SocketAppender clients. It waits for log-
ging events from SocketAppender clients. After reception by SimpleSocket-
Server, the events are logged according to local server policy. The SimpleSock-
etServer application takes two parameters: port and configFile; where port is the
port to listen on and configFile is configuration script in properties or XML format.

90 CHAPTER 4: APPENDERS

Assuming you are in the MANUAL_HOME/examples directory, start SimpleSock-
etServer with the following command:

 java org.apache.log4j.net.SimpleSocketServer 6000 chap-
ter4/server1.xml

where 6000 is the port number to listen on and server1.xml is a configuration script
that adds a ConsoleAppender and a RollingFileAppender to the root logger.
After you have started SimpleSocketServer, you can send log events to it from
multiple clients running SocketAppender. The manual includes two such clients:
chapter4.SocketClient1 and chapter4.SocketClient2. Both clients wait
for the user to type a line of text on the console. The text is encapsulated in a logging
event of level debug and then sent to the remote server. The two clients differ in the
configuration of the SocketAppender. SocketClient1 configures the appender
programmatically while SocketClient2 requires a configuration file.

Assuming SimpleSocketServer is running on the local host, you connect to it
with the following command:

java -Dlog4j.debug chapter4.SocketClient1 localhost 6000

Each line that you type should appear on the console of the SimpleSocketServer
launched in the previous step. If you stop and restart the SimpleSocketServer the
client will transparently reconnect to the new server instance, although the events
generated while disconnected are simply and irrevocably lost.

Unlike SocketClient1, the sample application SocketClient2 does not config-
ure log4j by itself. It requires a configuration file, either in properties or XML for-
mat. The configuration file client1.xml shown below creates a SocketAppender
and attaches it to the root logger.

Example 4-2: SocketAppender configuration (examples/chapter4/client1.xml)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration debug="true"
 xmlns:log4j='http://jakarta.apache.org/log4j/'>

 <appender name="SOCKET" class="org.apache.log4j.net.SocketAppender">
 <param name="RemoteHost" value="${host}"/>
 <param name="Port" value="${port}"/>
 </appender>

 <root>
 <level value ="debug"/>

JMSAPPENDER 91

The following discussion of
JMSAppender applies to log4j
version 1.2.6 or later.

 <appender-ref ref="SOCKET" />
 </root>
</log4j:configuration>

Note that in the above configuration scripts the values for the RemoteHost and Port
options are not given directly but as a substituted variable keys. The values for the
variables can be specified as system properties:

java -Dhost=localhost -Dport=6000 chapter4.SocketClient2 \
 chapter4/client1.xml

This command should give similar results to the previous SocketClient1 example.

Let me repeat and emphasize that serialization of logging events is non-intrusive. A
de-serialized event carries the same information as any other logging event and can
be manipulated as if it were generated locally; except that serialized logging events
by default do not include location information. Here is an example to illustrate the
point. First, start SimpleSocketServer with the following command:

java org.apache.log4j.net.SimpleSocketServer 6000 chap-
ter4/server2.xml

The configuration file servert2.xml creates a ConsoleAppender whose layout out-
puts the callers file name and line number along with other information. If you run
SocketClient2 with the configuration file client1.xml as previously, you will no-
tice that the output on the server side will contain two question marks between paren-
theses instead of the file name and the line number of the caller one would expect to
see:

2002-06-19 22:36:48,181 DEBUG [main] (?:?) chapter4.SocketClient2 –
Hi

The outcome can be easily changed by directing the SocketAppender to include
location information by setting the LocationInfo option to true. Refer to the configu-
ration file examples/chapter4/client2.xml for an example.

As deserialized events can be handled in the same way as locally generated events,
they even can be sent to a second server for further treatment. As an exercise, you
may wish to setup two servers where the first server tunnels the events it receives
from its clients to the second server.

JMSAppender
The JMSAppender conceptually accomplishes the
same task as the SocketAppender but as the

92 CHAPTER 4: APPENDERS

name suggests it is based on the JMS API instead of TCP sockets. JMS™ or the Java
Message Service API provides an abstraction for Message-Oriented Middleware
(MOM) products. One of the key architectural concepts in JMS is the decoupling of
message producers and message consumers. Senders do not have to wait for receiv-
ers to handle messages and conversely the receiver consumes messages as they be-
come available; messages are said to be delivered asynchronously. Just as impor-
tantly, consumers as well as producers can be added or removed at will to a JMS
communication channel. The set of the message producers and message consumers
can vary independently and transparently over time, with both sets oblivious to each
other.

The JMS specification provides for two types of messaging models, publish-and-
subscribe and point-to-point queuing. At the time of this writing, log4j only supports
the publish-and-subscribe model16. The JMSAppender publishes events to a topic
specified by the user and one or more JMSSink applications can consume these
events, as illustrated in Figure 4-3 below.

16 It would be very easy to add support for the queuing model as well. The implemen-
tation of a JMSQueueAppender is left as an exercise to the reader.

JMSAPPENDER 93

JMS Provider

JMSSink
(subscriber)

JMSAppender
(publisher)

JMSAppender
(publisher)

JMSAppender
(publisher)

JMSSink
(subscriber)

Figure 4-3: JMSAppender/JMSSink architecture

The consumer of JMSAppender generated events need not be only JMSSink appli-
cations, any application or MessageDrivenBeans that can subscribe to the appropriate
topic and consume messages containing serialized logging events are suitable. How-
ever, the only consumer that ships with log4j is the org.apache.log4j.-
net.JMSSink application while additional consumers can be built based on
JMSSink as an example.

The doAppend method in AppenderSkeleton delegates the task of actually out-
putting data to the append() method of its derived classes. The append() method
of JMSAppender is listed below.

public void append(LoggingEvent event) {
 if(!checkEntryConditions()) {
 return;
 }

 try {
 ObjectMessage msg = topicSession.createObjectMessage();
 if(locationInfo) {
 event.getLocationInformation();

94 CHAPTER 4: APPENDERS

 }
 msg.setObject(event);
 topicPublisher.publish(msg);
 } catch(Exception e) {
 errorHandler.error("Could not publish message in JMSAppender ["
 +name+"].", e, ErrorCode.GENERIC_FAILURE);
 }
}

The checkEntryConditions() method checks whether prerequisite conditions
for the proper functioning of the JMSAppender, in particular the availability of a
valid and open TopicConnection as well as a TopicSeesion, are fulfilled. Oth-
erwise, the append method returns in without performing any work. If however the
prerequisite conditions are fulfilled, then we can proceed to publish the logging
event. This is done by obtaining an javax.jms.ObjectMessage from the Top-
icSession setting its payload to the logging event and the publishing the message.
The fact that LoggingEvent is a serializable class is of particular importance as only
Serializable objects can be transported within an ObjectMessage. In summary,
the JMSAppender broadcasts messages consisting of a serialized LoggingEvent
payload to a user specified JMS topic.

These events are processed by a JMSSink or a similar consumer. According to JMS
specification, the provider will asynchronously call the onMessage() of duly regis-
tered and subscribed javax.jms.MessageListener objects. The onMessage()
method in JMSSink is implemented as follows:

public void onMessage(javax.jms.Message message) {
 Logger remoteLogger;

 if(message instanceof ObjectMessage) {
 ObjectMessage objMessage = (ObjectMessage) message;
 LoggingEvent event = (LoggingEvent)objMessage.getObject();
 remoteLogger = Logger.getLogger(event.getLoggerName());
 remoteLogger.callAppenders(event);
 } else {
 logger.warn("Received message is of type"
 +message.getJMSType()
 +", was expecting ObjectMessage.");
 }
 }
}

The onMessage() method begins by retrieving the logging event payload. It then
obtains a Logger with the same name as the logger name contained in the incoming
event. The event is then logged through this logger, as if it were generated locally, by

JMSAPPENDER 95

calling its callAppenders() method. This is essentially the same way the Sock-
etNode used by SimpleSocketServer handles incoming logging events.

JMS topics and topic connection factories are administered objects that are obtained
using the JNDI API which in turn requires the retrieval of a JNDI Context. There are
two common methods for obtaining a JNDI Context. If a file resource named
jndi.properties is available to the JNDI API, it will use the information found therein
to retrieve an initial JNDI context. To obtain an initial context, one simply calls:

InitialContext jndiContext = new InitialContext();

Calling the no-argument InitialContext() constructor will also work from
within Enterprise Java Beans (EJBs). Indeed, it is part of the EJB contract for appli-
cation servers to provide each enterprise bean an environment naming context
(ENC).

In the second approach, several predetermined properties are specified and these
properties are passed to the InitialContext contructor to connect to the naming service
provider. For example, to connect to the JBoss naming service one would write:

 Properties env = new Properties();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "org.jnp.interfaces.NamingContextFactory");
 env.put(Context.PROVIDER_URL, "jnp://hostname:1099");
 env.put(Context.URL_PKG_PREFIXES,
 "org.jboss.naming:org.jnp.interfaces");
 InitialContext jndiContext = new InitialContext(env);

where hostname is the host where the JBoss applicaiton server is running.

To connect to the naming service of Weblogic application server one would write:

 Properties env = new Properties();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 env.put(Context.PROVIDER_URL, "t3://hostname:7001");
 InitialContext jndiContext = new InitialContext(env);

Other JNDI providers will obviously require different values. As mentioned previ-
ously, the initial JNDI context can be obtained by calling the no-argument Initial-
Context() constructor from within EJBs. Only clients running in a separate JVM
need to be concerned about the jndi.properties file or alternatively setting the differ-
ent properties before calling InitialContext.InitialContext(Hashtable)
method.

96 CHAPTER 4: APPENDERS

The remote server is identified by the RemoteHost and Port options. SocketAp-
pender options are listed in the following table.

Option Name Type Description
LocationInfo boo-

lean
The LocationInfo option takes a boolean value. If
true, the information published on the JMS topic will
include location information. By default no location
information included in the published message.

InitialContextFac-
toryName

String The class name of the initial JNDI context factory.
You do no need to set this option if you have a prop-
erly configured jndi.properties file or if JMSAp-
pender is running witin an application server.

If you set this option, you should also set the
ProviderURL option.

ProviderURL String This option specifies configuration information for
the JNDI service provider. The value of the property
should contain a URL string (e.g.
"ldap://somehost:389").

The ProviderURL option is taken into account only
if the InitialContextFactoryName option is speci-
fied. It is ignored otherwise.

URLPkgPrefixes String This option contains the list of package prefixes to
use when loading in URL context factories. The
value of the property should be a colon-separated list
of package prefixes for the class name of the factory
class that will create a URL context factory.

For JBoss the value of this option should be:
 org.jboss.naming:org.jnp.interfaces
This option is not needed under Weblogic.

This option is taken into account only if the Initial-
ContextFactoryName option is specified. It is ig-
nored otherwise.

SecurityPrincipal-
Name

String The security principal name to use when accessing
the JNDI namespace. This option is usually not re-
quired.

This option is taken into account only if the Initial-
ContextFactoryName option is specified. It is ig-

JMSAPPENDER 97

nored otherwise.
SecurityCreden-
tials

String The security credentials to use when accessing the
JNDI namespace. This option is usually not required.

This option is taken into account only if both the Ini-
tialContextFactoryName and SecurityPrincipal-
Name options are specified. It is ignored otherwise.

TopicFactoryBind-
ingName

String The name of the topic factory. There is no default
value for this mandatory option.

TopicBindingName String The name of the topic to use. There is no default
value for this mandatory option.

UserName String The username to use when creating a topic connec-
tion.

Password String The password to use when creating a topic connec-
tion.

Threshold Level See AppenderSkeleton options.

Setting up JMSAppender with Weblogic (tested with version 6.1)

First, you must ensure that a JMS connection factory and a JMS topic are properly
configured. Let us assume that their JNDI names are “testConnectionFactory” and
“testTopic” respectively. This can be accomplished through the Weblogic server ad-
ministrative console.

Once that is done, start the JMSSink in a command window. This manual includes a
Weblogic specific jndi.properties file in the examples/resources/weblogic/ directory.
Its contents are reproduced below.

java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
Change "localhost" to the name of the host running the Weblogic
server.
java.naming.provider.url=t3://localhost:7001

Your next step should be to add the examples/resources/weblogic/ directory to your
CLASSPATH. Also make sure that weblogic.jar is in your CLASSPATH.

Changing to the LOG4J_MANUAL/examples/ and assuming a user named “guest”
with password “guest” is configured on the Weblogic server, the following command
will launch a JMSSink instance.

java org.apache.log4j.net.JMSSink testConnectionFactory testTopic \
 guest guest chapter4/jmssink.xml

98 CHAPTER 4: APPENDERS

The last argument, that is chapter4/jmssink.xml, specifies the path of a configuration
file. JMSSink will log the incoming logging events according to the logging policy
set by chapter4/jmssink.xml. This configuration file simply adds a ConsoleAppender
to the root logger causing each incoming logging event received from various clients
to be output on the console. The main point to note about this file is that it is a con-
figuration file like any other. It contains no JMS specific information.

Once an event consumer is available, a producer of logging events can be launched.
The JMSAppender produces logging events. We will attach a JMSAppender to a
simple application called chapter4.LogStdin included with this manual. This
application reads the input typed on the console line by line. Each line is then logged
at the debug level. The LogStdin admits one parameter which is the location of a
configuration file. The configuration file weblogic.xml file listed below creates a
JMSAppender with the appropriate options. This appender is then attached to the
root logger.

Example 4-3: JMSAppender configuration for Weblogic (examples/chapter4/weblogic.xml)

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration debug="true"
 xmlns:log4j='http://jakarta.apache.org/log4j/'>

 <appender name="JMS" class="org.apache.log4j.net.JMSAppender">

 <param name="InitialContextFactoryName"
 value="weblogic.jndi.WLInitialContextFactory"/>
 <param name="ProviderURL" value="t3://localhost:7001"/>
 <param name="TopicConnectionFactoryBindingName"
 value="testConnectionFactory"/>
 <param name="TopicBindingName" value="testTopic"/>
 <param name="UserName" value="guest"/>
 <param name="Password" value="guest"/>
 <param name="LocationInfo" value="true"/>
 </appender>

 <root>
 <level value ="debug"/>
 <appender-ref ref="JMS" />
 </root>
</log4j:configuration>

 Start one or more LogStdin applications as follows:

 java chapter4.LogStdin chapter4/weblogic.xml

JMSAPPENDER 99

Make sure that log4j classes as well as weblogic.jar are available on the classpath.
Note that examples/resources/weblogic/ directory is not required to be on the class-
path because all JNDI related information is specified through options given to the
JMSAppender.

Each line entered on LogStdin will appear on the JMSSink window or windows.

Setting up JMSAppender with JBoss (tested with version 3.0.1)

Running JMSAppender with JBossMQ, the JMS provider in JBoss, is not very dif-
ferent, a topic connection factory and topic must be configured. To easy our task,
JBoss ships a connection factory called “Connection” and a topic called
“topic/testTopic” already pre-configured in the JNDI namespace which suffice for
the purposes of this example.

Before launching JMSSink on the command line make sure that the following jar
files are on the classpath:

JBOSS/client/jboss-j2ee.jar
JBOSS/client/jnp-client.jar
JBOSS/client/jnet.jar
JBOSS/client/jbosssx-client.jar
JBOSS/client/jbossmq-client.jar
JBOSS/client/jboss-common-client.jar
JBOSS/client/concurrent.jar

where JBOSS is the name of the directory where you installed JBoss. If you intend
to use configuration written in XML, then you must also add a JAXP parser to the
classpath. This manual includes a JBoss specific jndi.properties file in the exam-
ples/resources/jboss/ directory. The contents of this file are reproduced below.

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactor
y
java.naming.provider.url=jnp://localhost:1099
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

Once that is done, start the JMSSink in a command window.

 java org.apache.log4j.net.JMSSink ConnectionFactory topic/testTopic \
 guest guest chapter4/jmssink.xml

Note that the command to start JMSSink with JBoss differs only in connection fac-
tory and topic names. We did not need to change the user name because by happen-
stance, the “guest” user is also available in JBoss.

100 CHAPTER 4: APPENDERS

Once JMSSink, our event consumer, is started, a producer of logging events can be
launched. As in the previous example, we attach a JMSAppender to our simple ap-
plication named chapter4.LogStdin. This application reads the input typed on the
console line by line. Each line is then logged at the debug level. The LogStdin ad-
mits one parameter which is the location of a configuration file. The configuration
file jboss.xml, which is listed below, creates a JMSAppender with the appropriate
options. This appender is then attached to the root logger.

Example 4-4: JMSAppender configuration for JBoss (examples/chapter4/jboss.xml)

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration debug="true"
 xmlns:log4j='http://jakarta.apache.org/log4j/'>

 <appender name="JMS" class="org.apache.log4j.net.JMSAppender">
 <param name="InitialContextFactoryName"
 value="org.jnp.interfaces.NamingContextFactory"/>
 <param name="ProviderURL" value="jnp://localhost:1099"/>
 <param name="URLPkgPrefixes"
 value="org.jboss.naming:org.jnp.interfaces"/>
 <param name="TopicConnectionFactoryBindingName"
 value="ConnectionFactory"/>
 <param name="TopicBindingName" value="topic/testTopic"/>
 <param name="UserName" value="guest"/>
 <param name="Password" value="guest"/>
 <param name="LocationInfo" value="true"/>
 </appender>

 <root>
 <level value ="debug"/>
 <appender-ref ref="JMS" />
 </root>
</log4j:configuration>

Start one or more LogStdin applications as follows:

java chapter4.LogStdin chapter4/jboss.xml

Make sure that log4j classes as well as the aforementioned list of JBoss related files
are available on the classpath. Note that examples/resources/jboss/ directory is not
required to be on the classpath because all JNDI related information is specified
through options included in the configuration file.

Each line entered on LogStdin will appear on the JMSSink window. In case you
are running multiple JMSSink windows, then each line will be received by every
sink.

SMTPAPPENDER 101

Comments on JMSAppender

Transmitting a packet of information using JMS is certain to be substantially slower
then sending the same packet using raw TCP sockets. JMS vendors bragging about
the performance of their messaging platform tend to omit this simple fact. Guaran-
teed store and forward messaging comes at a hefty fee. In return for increased cost,
JMS messaging provides decoupling of sender and receiver. As long as the JMS pro-
vider is reachable, messages will eventually arrive at destination. However, what if
the JMS server is down or simply unreachable?

According to the JMS specification, producers can mark a message as either persis-
tent or non-persistent. The persistent delivery mode instructs the JMS provider to log
the message to stable storage as part of the client's send operation allowing the mes-
sage to survive provider crashes. JMSAppender does not set the delivery mode of
messages is produces because the delivery mode is deemed an administered property
according to the JMS specification.

Once a message reaches the JMS provider, the provider assumes the responsibility of
delivering it to its destination, relieving the client from this duty. What if the JMS
server is unreachable? The JMS API provides an ExceptionListener interface to
deal with this situation. When the client runtime of the JMS provider detects a lost
connection to the JMS server, it calls the onException() method of the registered
ExceptionListener, for each existing connection. Once notified of the problem,
client code can attempt to reestablish the connection. According to the section 4.3.8
of the JMS specification, the provider should attempt to resolve connection problems
prior to notifying the client. Up to an including log4j version 1.2.6, the JMSAp-
pender does not implement the ExceptionListener interface. A future version
of log4j may offer a more complete solution.

SMTPAppender
The SMTPAppender accumulates logging events in a fixed-size buffer and sends
them in an e-mail when a certain triggering event occurs. By the default, the trigger-
ing event is the reception of an event of level ERROR or higher.

The SMTPAppender keeps only the last BufferSize logging events in its cyclic
buffer, throwing away older events when its buffer becomes full. The number of log-
ging events delivered in any e-mail sent by SMTPAppender is upper-bounded by
BufferSize. This keeps memory requirements bounded while still delivering the de-
sired amount of application context.

102 CHAPTER 4: APPENDERS

The SMTPAppender relies on the JavaMail API. It has been tested with JavaMail
API version 1.2. The JavaMail API requires the JavaBeans Activation Framework
package. You can download the JavaMail API at
http://java.sun.com/products/javamail/ and the JavaBeans Activation Framework at
http://java.sun.com/beans/glasgow/jaf.html. For your convenience, the required jar
files are shipped with this manual under the lib/ directory as mail.jar and respectively
as activation.jar. Make sure to place these two jar files in the classpath before trying
the following examples.

A sample application called chapter4.EMail takes two parameters. The first pa-
rameter is an integer corresponding to the number of logging events to generate. The
second parameter is the log4j configuration file to use which can be in properties or
XML format. The last logging event generated by chapter4.Email application is
always an ERROR event which has the effect of triggering the transmission of an e-
mail message.

Here is a sample configuration file you can supply to chapter4.Email:

Example 4-5: A sample SMTPAppender configuration file (examples/chapter4/mail1.xml)

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration debug="true"
xmlns:log4j='http://jakarta.apache.org/log4j/'>

 <appender name="EMAIL" class="org.apache.log4j.net.SMTPAppender">
 <param name="SMTPHost" value="ADDRESS-OF-YOUR-SMTP-HOST"/>
 <param name="To" value="DESTINATION1@EMAIL, DESTINATION2@EMAIL"/>
 <param name="From" value="SENDER@EMAIL"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d %-5p %c - %m%n"/>
 </layout>
 </appender>

 <root>
 <level value ="debug"/>
 <appender-ref ref="EMAIL" />
 </root>
</log4j:configuration>

Before trying out chapter4.Email application with the above configuration file
you must set the SMTPHost, To and From options to appropriate values. Once you
have set the proper values, execute the following command:

 java chapter4.EMail 300 chapter4/mail.xml

SMTPAPPENDER 103

The chosen recipient should see an e-mail message containing 300 logging events
formatted by PatternLayout.

In another configuration file mail2.xml included under chaper4/examples/ directory,
the values for the SMTPHost, To and From options are determined by variable sub-
stitution. Here is the relevant part of mail2.xml.

 <appender name="EMAIL" class="org.apache.log4j.net.SMTPAppender">
 <param name="SMTPHost" value="${smtpHost}"/>
 <param name="To" value="${to}"/>
 <param name="From" value="${from}"/>
 <layout class="org.apache.log4j.HTMLLayout"/>
 </appender>

You can supply the various values on the command line:

java -Dfrom=source@xyz.com -Dto=recipient@xyz.com
 -DsmtpHost=some_smtp_host chapter4.EMail 10000 chap-
ter4/mail2.xml

Be sure to replace with the correct values appropriate for your environment.

Given that the default size of the cyclic buffer is 512, the recipient should see an e-
mail message containing 512 events conveniently formatted in an HTML table. Note
that this run of the chapter4.Email application generated 10’000 events of which
only the last 512 were included in the e-mail.

The various options for SMTPAppender are summarized in the following table.

Option Name Type Description
SMTPHost String The host name of the SMTP server. This parame-

ter is mandatory.
To String The e-mail address of the recipient. Multiple re-

cipients can be specified by separating each re-
cipient with a comma.

From String The stated originator of the e-mail messages sent
by SMTPAppedner.

BufferSize int The BufferSize option takes a positive integer
representing the maximum number of logging
events to collect in a cyclic buffer. When the
BufferSize is reached, oldest events are deleted
as new events are added to the buffer. The default
size of the cyclic buffer is 512.

EvaluatorClass String The EvaluatorClass option takes a string value
representing the name of the class implementing

104 CHAPTER 4: APPENDERS

the TriggeringEventEvaluator interface. A
corresponding object will be instantiated and as-
signed as the triggering event evaluator for the
SMTPAppender. In the absence of this option,
SMTPAppender is assigned a default evaluator
which triggers e-mail transmission as a response
to any event of level ERROR or higher.

LocationInfo boolean The LocationInfo option takes a boolean value. If
true, then the events placed in the cyclic buffer
will include location information. By default no
location information is included in the buffered
events.

Threshold Level See AppenderSkeleton options.

By default, the SMTPAppender will initiate the transmission of an e-mail message
as a response to an event of level ERROR or higher. However, it is possible to over-
ride this default behavior by provider a custom implementation of the Trigger-
ingEventEvaluator interface. This interface contains a single method named is-
TriggeringEvent().

package org.apache.log4j.spi;

public interface TriggeringEventEvaluator {
 public boolean isTriggeringEvent(LoggingEvent event);
}

The SMTPAppender submits each incoming event to its evaluator by calling its is-
TriggeringEvent() method in order to check whether the event should trigger an
e-mail or just be placed in the cyclic buffer. The SMTPAppender contains one and
only one evaluator object. This object may possess its own state. For illustrative pur-
poses, the CounterBasedTEE class, listed next, implements a triggering policy
whereby every 1024th event triggers an e-mail message.

Example 4-6: A TriggeringEventEvaluator implementation that triggers every 1024th event
(examples/chapter4/ CounterBasedTEE.java)

package chapter4;

import org.apache.log4j.spi.TriggeringEventEvaluator;
import org.apache.log4j.spi.LoggingEvent;

public class CounterBasedTEE implements TriggeringEventEvaluator {
 int counter = 0;
 static int LIMIT = 1024;

ASYNCAPPENDER 105

 public boolean isTriggeringEvent(LoggingEvent event) {
 counter++;
 if(counter == LIMIT) {
 counter = 0;
 return true;
 } else {
 return false;
 }
 }
}

Setting the EvaluatorClass option of SMTPAppender instructs it to use a custom
evaluator. The next configuration file attaches a SMTPAppender to the root logger.
This appender has a buffer size of 1024 and uses a CounterBasedTEE instance as
its triggering event evaluator.

Example 4-7: SMTPAppender with custom evaluator and buffer size (examples/chap-
ter4/mail3.xml)

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration debug="true"
xmlns:log4j='http://jakarta.apache.org/log4j/'>

 <appender name="EMAIL" class="org.apache.log4j.net.SMTPAppender">
 <param name="EvaluatorClass" value="chapter4.CounterBasedTEE"/>
 <param name="SMTPHost" value="${smtpHost}"/>
 <param name="BufferSize" value="2048"/>
 <param name="To" value="${to}"/>
 <param name="From" value="${from}"/>
 <layout class="org.apache.log4j.HTMLLayout"/>
 </appender>

 <root>
 <level value ="debug"/>
 <appender-ref ref="EMAIL" />
 </root>
</log4j:configuration>

AsyncAppender
The AsyncAppender logs events asynchronously. It uses a bounded queue to
store events. The AsyncAppender.append() method immediately returns after
placing events in the bounded queue. The events accumulated in the bounded
queue are served by an internal thread called the dispatcher thread. While the
bounded queue is not empty, the dispatcher thread will continuously remove the old-

106 CHAPTER 4: APPENDERS

est event in the queue and dispatch it to all the appenders attached to the AsyncAp-
pender. Zero or more appenders can be attached to AsyncAppender. Append-
ing to AsyncAppender is non-blocking as long as the bounded queue is not
full. If however the queue is full, then AsyncAppender.append() will not re-
turn until free space becomes available. The dispatcher thread will free space one at
a time. It will remove the oldest event at the bottom of the queue, dispatch it to each
attached appender, wait for them to finish appending, and only then serve the next
event from the queue.

The AsyncAppender does not improve logging throughput. On the contrary,
non-negligible number of CPU cycles is spent managing the bounded queue
and synchronizing the dispatcher thread with various client threads. Thus,
while logging each event will take a little longer to complete, appending those
events will hopefully take place at times where other threads are idle either
waiting for new input to process or blocked on I/O intensive operations. In
short, I/O bound applications will benefit from asynchronous logging while
CPU bound applications will not.

Given that AsyncAppender is a composite appender containing other appenders, it
can only be configured by DOMConfigurator. In configuration files, each appender
that the AsyncAppender refers to is attached to it. Once configured, AsyncAp-
pender can be attached to a logger like any other appender, as the sample configu-
ration file async.xml illustrates:

Example 4-8: AsyncAppender with two attached appenders (examples/chapter4/async.xml)

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration debug="true"
 xmlns:log4j='http://jakarta.apache.org/log4j/'>

 <appender name="ASYNC" class="org.apache.log4j.AsyncAppender">
 <param name="BufferSize" value="256"/>
 <appender-ref ref="FILE" />
 <appender-ref ref="CONSOLE" />
 </appender>

 <appender name="CONSOLE" class="org.apache.log4j.ConsoleAppender">
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d [%t] %-5p %c - %m%n"/>
 </layout>
 </appender>

 <appender name="FILE" class="org.apache.log4j.FileAppender">
 <param name="File" value="sample.log"/>

ASYNCAPPENDER 107

 <param name="Append" value="false"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d [%t] %-5p %c - %m%n"/>
 </layout>
 </appender>

 <root>
 <level value ="debug"/>
 <appender-ref ref="ASYNC" />
 </root>
</log4j:configuration>

NOTE The AsyncAppender can only be configured using
DOMConfigurator.

The various options for AsyncAppender are summarized in the following table.

Option Name Type Description
BufferSize int The BufferSize option takes a positive integer

representing the maximum number of logging
events that can be buffered in the internal queue.
The default size of the buffer is 128.

LocationInfo boolean The LocationInfo option takes a boolean value. If
true, AsyncAppender will extract location infor-
mation prior to inserting the event in the queue.
As a result, events will carry the correct location
information, even if logged asynchronously. Oth-
erwise, events are likely to contain the wrong
location information assuming such informa-
tion is present in the output format. Location
information extraction is comparatively slow
and should be avoided unless performance is
not a concern. Given that AsyncAppender ex-
ists for the sole purpose of improving perform-
ance, setting LocationInfo defeats this purpose.

By default no location information extracted prior
to insertion in the queue.

Threshold Level See AppenderSkeleton options.

108 CHAPTER 4: APPENDERS

Handling Errors
Appenders can delegate the processing of error conditions to an object implementing
the org.apache.log4j.spi.ErrorHandler interface. By default, the Append-
erSkeleton sets the error handler to an OnceOnlyErrorHandler which prints a
single warning message on the console–the first error is reported while subsequent
errors are ignored. The ErrorHandler interface is listed below:

package org.apache.log4j.spi;

import org.apache.log4j.Appender;
import org.apache.log4j.Logger;

public interface ErrorHandler extends OptionHandler {

 void setLogger(Logger logger);
 void error(String message, Exception e, int errorCode);
 void error(String message);
 void error(String message, Exception e, int errorCode,
 LoggingEvent event);

 void setAppender(Appender appender);
 void setBackupAppender(Appender appender);
}

All appenders derived from AppenderSkeleton contain one and only one Error-
Handler. Appenders call one of the error() methods of their error handler to sig-
nal an error condition. The invocation of the setAppender() method informs the
error handler of the primary appender it is associated with. The setBackupAppender()
associates a backup appender with the error handler. Not all error handlers make use
of the backup appender. The setLogger method, which should have been called the
addLogger, adds a logger to search for when reacting to error conditions. Indeed,
some error handlers will detach the primary appender from the loggers and replace it
with the backup appender.

The OnceOnlyErrorHandler does not make use of any of this information. It just
prints the first error message it receives, ignoring following errors. The Fallback-
ErrorHandler in package org.apache.log4j.varia, implements a more so-
phisticated policy whereby in response to an error in the primary appender, it detach
it from the loggers it is attached to and replace it with a fallback appender.

In configuration files, the error handler of an appender can be configured with the
<errorHandler> element. This element was formally introduced in the previous
chapter on page 48. It has a mandatory class attribute which specifies fully quali-
fied name of the error handler implementation to associate with the containing ap-
pender. It may contain <param> elements in order to pass parameters to the error

HANDLING ERRORS 109

handler. The FallbackErrorHandler does not make use <param> elements. The
<root-ref> element and the <logger-ref> elements refer to loggers where the
primary appender is attached to. The <appender-ref> element refers to the ap-
pender serving as backup in case of failure with the primary appender.

The next configuration file illustrates FallbackErrorHandler usage.

Example 4-9: Sample FallbackErrorHandler configuration (exam-
ples/chapter4/fallback1.xml)

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration debug="true"
 xmlns:log4j="http://jakarta.apache.org/log4j/">

 <appender name="PRIMARY" class="org.apache.log4j.FileAppender">
 <errorHandler class="org.apache.log4j.varia.FallbackErrorHandler">
 <root-ref/>
 <appender-ref ref="FALLBACK" />
 </errorHandler>

 <param name="File" value="/xyz/x.log" />
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%-5p %c{2} - %m%n"/>
 </layout>
 </appender>

 <appender name="FALLBACK" class="org.apache.log4j.FileAppender">
 <param name="File" value="fallback.log" />
 <param name="Append" value="false" />
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="--%d %p %t %c - %m%n"/>
 </layout>
 </appender>

 <root>
 <priority value ="debug" />
 <appender-ref ref="PRIMARY" />
 </root>
</log4j:configuration>

In the above configuration file, a FileAppender named “PRIMARY” is attached to
the root logger. This appender’s error handler, of type FallbackErrorHandler,
refers to a FileAppender named “FALLBACK”. The <root-ref> element indi-
cates that the containing appender is attached to the root logger. This information is
used by the fallback error handler locate the loggers where the primary appender is
attached to.

110 CHAPTER 4: APPENDERS

Assuming that the /xyz/ directory does not exist, the FileAppender will not be able
to open the /xyz/x.log file and will fail before writing a single message. However, it
will call its error handler which will replace the failing “PRMARY” appender with
the “FALLBACK” appender.

You can see the FallbackErrorHandler in action by issuing the following com-
mand.

java chapter4.EventGenerator 10 chapter4/fallback1.xml

The messages appearing on the console should show the failure of the primary ap-
pender and its replacement with its backup. Moreover, none of the generated events
should be lost. They should all appear in the file fallback.log.

Writing your own Appender
You can easily write your appender by sub-classing AppenderSkeleton which
handles support for filters, layouts, append threshold among other features used by
most appenders. The derived class only needs to implement a small number of meth-
ods, namely append(LoggingEvent), close() and requiresLayout().

The CountingConsoleAppender, which is listed next, appends a limited number
of incoming events on the console. It shuts down after the limit is reached.

Example 4-10: A sample appender that outputs a limited number of events on the con-
sole(examples/chapter4/CountingConsoleAppender.java)

package chapter4;

import org.apache.log4j.AppenderSkeleton;
import org.apache.log4j.spi.LoggingEvent;
import org.apache.log4j.spi.ErrorCode;
import org.apache.log4j.Layout;
import org.apache.log4j.helpers.LogLog;

public class CountingConsoleAppender extends AppenderSkeleton {

 int counter = 0;
 int limit = 16;

 public CountingConsoleAppender() { }
 public void setLimit(int limit) { this.limit = limit; }
 public int getLimit() { return limit; }

 public void append(LoggingEvent event) {
 if(this.layout == null) {

WRITING YOUR OWN APPENDER 111

 errorHandler.error("No layout set for the appender named ["
 + name+"].", null, ErrorCode.MISSING_LAYOUT);
 return;
 }
 if(counter >= limit) {
 errorHandler.error("Counter limit reached in ["+ getName()
 +"] appender", null, ErrorCode.WRITE_FAILURE);
 return;
 }

 // output the events as formatted by our layout
 System.out.print(this.layout.format(event));

 // if our layout does not handle exceptions, we have to do it.
 if(layout.ignoresThrowable()) {
 String[] t = event.getThrowableStrRep();
 if (t != null) {
 int len = t.length;
 for(int i = 0; i < len; i++) {
 System.out.println(t[i]);
 }
 }
 }
 // prepare for next event
 counter++;
 }

 public void close() {
 if(this.closed) // closed is defined in AppenderSkeleton
 return;
 this.closed = true;
 }

 public boolean requiresLayout() { return true; }
}

This custom appender illustrates a number of points.

• All options that follow the setter/getter JavaBeans conventions are handled trans-
parently. However, in case of interdependency between options, they can be
activated concomitantly within the activateOptions method. See the source
code FileAppender, JMSAppender or SMTPAppender for examples.

• The AppenderSkeleton.doAppend17 method invokes the append() method
of its derived classes where actual output operations occur. It is in this method

17 See the begging of this chapter for a discussion on AppenderSkeleton.doAppend
method.

112 CHAPTER 4: APPENDERS

that appenders format events by invoking their layouts. In case their layout ig-
nores exceptions, derived appenders are also responsible for outputting the ex-
ception included in the event. The derived appender must also call its error han-
dler in case of errors.

• Derived appenders must set the value of the closed field (defined in Append-
erSkeleton) to true when their close() method is invoked.

• Derived appenders requiring a layout must return true in their requiresLay-
out() method.

The CountingConsoleAppender can be configured like any appender. See sample
file examples/chapter4/countingConsole.xml for an example. Our custom appender
also handles error conditions. Execute the following command to see our custom ap-
pender being replaced by a regular ConsoleAppender after our self-imposed limit
is reached.

java chapter4.EventGenerator 20 chapter4/fallback2.xml

WRITING YOUR OWN LAYOUT 113

5.Layout

TCP implementations will follow a general principle of
robustness: be conservative in what you do, be liberal in
what you accept from others.

Jon Postel, RFC 793

While appenders are responsible for writing logging output to an appender dependent
device, layouts are responsible for the format of the output. In case you were wonder-
ing, layouts have nothing to do with large estates. The format() method in the
Layout class takes in a LoggingEvent and returns a String. Below is a synopsis
of the Layout class.

public abstract class Layout implements OptionHandler {

 // Derived classes need to implement their own formatting strategy.
 abstract public String format(LoggingEvent event);

 public String getContentType() { return "text/plain"; }
 public String getHeader() { return null; }
 public String getFooter() { return null; }
 abstract public boolean ignoresThrowable();
}

Actually, except for the omission of comments and the usual paraphernalia, the
above is the complete Layout implementation. Honest. Willy the hacker from Sub-
urbia might exclaim: it just takes two methods to implement a layout? That should be
a piece of cake!

Writing your own Layout
Let’s implement a functional layout that prints the time elapsed since the start of the
application, the level of the logging event, the caller thread between brackets, its log-
ger, a dash followed by the event message and a new line. Sample output might look
like:

114 CHAPTER 5: LAYOUT

10489 DEBUG [main] com.marsupial.Pouch – Hello world.

By a quaint chain of events, the very playful Willy the Hacker beat us to it. Like any
self-respecting hacker, Willy has of course a 2 GBit/s connection to the internet, not
a measly 56K dial-up connection like the rest of us. Here is what he sent me over his
high-speed connection.

package chapter5;
import org.apache.log4j.Layout;
import org.apache.log4j.spi.LoggingEvent;

public class MyLayout1 extends Layout {

 public MyLayout1() {}
 public void activateOptions() {}

 public String format(LoggingEvent event) {
 StringBuffer sbuf = new StringBuffer(128);
 sbuf.append(event.timeStamp - event.getStartTime());
 sbuf.append(" ");
 sbuf.append(event.level.toString());
 sbuf.append(" [");
 sbuf.append(event.getThreadName());
 sbuf.append("] ");
 sbuf.append(event.getLoggerName());
 sbuf.append(" - ");
 sbuf.append(event.getRenderedMessage());
 sbuf.append(LINE_SEP);
 return sbuf.toString();
 }

 // MyLayout1 ignores any throwable contained in the event. Thus, it
 // is the responsibility of the containing appender to handle the
 // throwable, if any such throwable exists.
 public boolean ignoresThrowable() {
 return true;
 }
}

Note that the Layout class implements the OptionHandler interface. Since My-
Layout1 does not have any options, its activateOptions method is empty. The
non-empty thus marginally more interesting format method begins by instantiating
a StringBuffer. It proceeds by add various fields of the event parameter. Willy
was careful to print the rendered form of the message and not its object form. This
allows for object rendering to kick-in in case there are registered ObjectRenders.
In the listing of the Layout class, I omitted the class static LINE_SEP field which is
assigned the value returned by System.getProperty("line.separator"). Af-
ter adding system dependent line separator character(s), and returns the string buffer

WRITING YOUR OWN LAYOUT 115

as a string. The format method ignores any eventual exceptions contained in the
event, leaving the task to the containing appender.

Custom layouts are configured as any other layout, as shown below.

Example 5-1: Configuring a custom layout (examples/chapter5/mylayout1.xml)

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration xmlns:log4j='http://jakarta.apache.org/log4j/'>

 <appender name="CONSOLE" class="org.apache.log4j.ConsoleAppender">
 <layout class="chapter5.MyLayout1"/>
 </appender>

 <root>
 <level value ="debug"/>
 <appender-ref ref="CONSOLE" />
 </root>
</log4j:configuration>

The sample application chapter5.Sample configures log4j with the configuration
script supplied as parameter and then logs a debug message followed by an error
message containing an exception. See examples/chapter5/Sample.java for the exact
details.

Executing the command

java chapter5.Sample chapter5/mylayout1.xml

will yield the following on the console:

0 DEBUG [main] chapter5.Sample - First message
11 WARN [main] chapter5.Sample - Nothing is wrong, just testing.
java.lang.Exception: Just a test.
 at chapter5.Sample.main(Sample.java:34)

That was simple enough. How about a layout with options? The skeptic Pyrrho of
Elea might ask. The reader shall perhaps18 find a slightly modified version of our
custom layout in MyLayout2.java. She will discover that adding an option to a layout

18 Pyrrho insists that nothing is certain except perhaps uncertainty itself, which is by no means
certain either.

116 CHAPTER 5: LAYOUT

is as simple as declaring a setter method for the option. See also chap-
ter5/mylayout2.xml for a configuration example.

PatternLayout
Although easy, users rarely have to write a custom layout. Indeed, log4j ships with a
flexible layout called the PatternLayout. As all layouts, PatternLayout takes in a
LoggingEvent and returns a String. However, the returned String can be modi-
fied at will by tweaking the conversion pattern. The conversion pattern of the Pat-
ternLayout is closely related to the conversion pattern of the printf() function
in the C programming language. A conversion pattern is composed of literal text and
format control expressions called conversion specifiers. You are free to insert any
literal text within the conversion pattern.

Each conversion specifier starts with a percent sign (%) and is followed by optional
format modifiers and a conversion character. The conversion character controls the
type of data to use, e.g. logger name, level, date, thread name. The format modifiers
control such things as field width, padding, left or right justification. The following is
a simple example.

Example 5-2 Sample PatternLayout usage. (examples/chapter5/PatternSample.java)

package chapter5;

import org.apache.log4j.Logger;
import org.apache.log4j.PatternLayout;
import org.apache.log4j.ConsoleAppender;

public class PatternSample {

 static public void main(String[] args) throws Exception {
 Logger rootLogger = Logger.getRootLogger();
 PatternLayout layout = new PatternLayout("%-5p [%t]: %m%n");
 ConsoleAppender appender = new ConsoleAppender(layout);
 rootLogger.addAppender(appender);

 rootLogger.debug("Message 1");
 rootLogger.warn("Message 2");
 }
}

The conversion pattern is set to be "%-5p [%t]: %m%n". Running PatternSample
will yield the following output on the console.

DEBUG [main]: Message 1
WARN [main]: Message 2

PATTERNLAYOUT 117

Note that in the conversion pattern “"%-5p [%t]: %m%n” there is no explicit separa-
tor between literal text and conversion specifiers. When parsing a conversion pattern,
the PatternLayout is capable of differentiating between literal text (space charac-
ters, the brackets, colon character) and conversion specifiers. In the example above,
the conversion specifier %-5p means the priority (i.e. level) of the logging event
should be left justified to a width of five characters. Format specifiers will be ex-
plained in a short moment.

The recognized conversion characters are listed in the table below.

Conversion
Character

Effect

c

Outputs the category19 (logger) of the logging event. The category
conversion specifier can be optionally followed by precision speci-
fier, that is a decimal constant within braces. If a precision specifier
is given, then only the corresponding number of right most compo-
nents of the logger name will be printed. For example, for the logger
name "a.b.c" the pattern %c{2} will output "b.c". By default the log-
ger name is printed in full.

C

Outputs the fully qualified class name of the caller issuing the log-
ging request. This conversion specifier can be optionally followed by
precision specifier, that is a decimal constant in braces. If a precision
specifier is given, then only the corresponding number of right most
components of the class name will be printed. By default the class
name is printed in full. For example, for the class name
"org.apache.xyz.SomeClass", the pattern %C{1} will output "Some-
Class".

d

Outputs the date of the logging event. The date conversion specifier
may be followed by a date format specifier enclosed between braces.
For example, %d{HH:mm:ss,SSS} or
%d{dd MMM yyyy HH:mm:ss}. If no date format specifier is given
then ISO8601 format is assumed. The date format specifier admits
the same syntax as the time pattern string of the
java.text.SimpleDateFormat. Although part of the standard
JDK, the performance of SimpleDateFormat is quite poor. For bet-
ter results it is recommended to use the log4j date formatters. These
can be specified using one of the strings "ABSOLUTE", "DATE"

19 The names category and priority and their respective conversion characters are retained for
historical reasons.

118 CHAPTER 5: LAYOUT

and "ISO8601" for respectively AbsoluteTimeDateFormat,
DateTimeDateFormat and ISO8601DateFormat. For example,
%d{ISO8601} or %d{ABSOLUTE}. These dedicated date format-
ters perform substantially better than SimpleDateFormat.

F Outputs the file name where the logging request was issued.

l

Outputs location information of the caller which generated the log-
ging event. The location information depends on the JVM
implementation but usually consists of the fully qualified name of the
calling method followed by the callers source the file name and line
number between parentheses. The location information can be very
useful. However, it's generation is extremely slow. It's use should be
avoided unless execution speed is not an issue.

L Outputs the line number from where the logging request was issued,
that is the caller’s line number.

m Outputs the application supplied message associated with the logging
event.

M Outputs the method name where the logging request was issued.

n

Outputs the platform dependent line separator character or characters.
This conversion character offers practically the same performance as
using non-portable line separator strings such as "\n", or "\r\n". Thus,
it is the preferred way of specifying a line separator.

p Outputs the priority, a.k.a. the level, of the logging event.

r Outputs the number of milliseconds elapsed since the start of the ap-
plication until the creation of the logging event.

t Outputs the name of the thread that generated the logging event.

x
Outputs the NDC (nested diagnostic context) associated with the
thread that generated the logging event. The NDC will be discussed
in Chapter 7.

X

Outputs the MDC (mapped diagnostic context) associated with the
thread that generated the logging event. The X conversion character
must be followed by a key placed between braces, as in
%X{clientNumber} where clientNumber is the key. The corre-
sponding value in the MDC will be output. The MDC will be dis-
cussed in Chapter 7.

% The sequence %% outputs a single percent sign.

WARNING Generating the caller class information is slow. Thus, the use of
the C, F, l, L, and M conversion characters should be avoided unless execu-
tion speed is not an issue.

PATTERNLAYOUT 119

By default the relevant information is output as is. However, with the aid of format
modifiers it is possible to change the minimum field width, the maximum field width
and justification. The optional format modifier is placed between the percent sign
and the conversion character.

The first optional format modifier is the left justification flag which is just the minus
(-) character. The second optional modifier is the minimum field width modifier. This
is a decimal constant that represents the minimum number of characters to output. If
the data item requires fewer characters, it is padded on either the left or the right until
the minimum width is reached. The default is to pad on the left (right justify) but you
can specify right padding with the left justification flag. The padding character is
space. If the data item is larger than the minimum field width, the field is expanded
to accommodate the data. The value is never truncated.

This behavior can be changed using the maximum field width modifier which is des-
ignated by a period followed by a decimal constant. If the data item is longer than the
maximum field, then the extra characters are removed from the beginning of the data
item and not from the end. For example, it the maximum field width is eight and the
data item is ten characters long, then the first two characters of the data item are
dropped. This behavior deviates from the printf function in C where truncation is
done from the end.

The table below gives examples of various format modifiers for the category conver-
sion specifier.

Format
modifier left justify minimum

width
maximum

width comment

%20c false 20 None
Left pad with spaces if the logger
name is less than 20 characters
long.

%-20c true 20 None
Right pad with spaces if the log-
ger name is less than 20 charac-
ters long.

%.30c NA none 30
Truncate from the beginning if
the logger name is longer than 30
characters.

%20.30c false 20 30

Left pad with spaces if the logger
name is shorter than 20 charac-
ters. However, if logger name is
longer than 30 characters, then
truncate from the beginning.

120 CHAPTER 5: LAYOUT

%-20.30c true 20 30

Right pad with spaces if the log-
ger name is shorter than 20 char-
acters. However, if logger name
is longer than 30 characters, then
truncate from the beginning.

Below are some examples of conversion patterns.

ConversionPattern: %r [%t] %-5p %c - %m%n

Sample output:

100 [main] INFO com.marsupial.Pouch - Hi. I am from Austrila.
110 [main] DEBUG com.marsupial.Pouch - Hi again
120 [main] WARN com.marsupial.Gopher – I am getting thirsty.

Here is another one: %-6r [%10.10t] %-5p %20.20c %x - %m%n

Sample output:

0 [main] DEBUG chapter5.Sample - First message
10 [main] WARN chapter5.Sample - Nothing is wrong.

The relative time is right padded if less than 6 digits, thread name is right padded if
less than 10 characters and truncated if longer and the logger name is left padded if
shorter than 20 characters and truncated if longer.

The synopsis for the PatternLayout is inspired from Peter A. Darnell and Philip
E. Margolis' highly recommended book “C – a Software Engineering Approach,”
ISBN 0-387-97389-3.

XMLLayout
The XMLLayout produces a stream of log events in a fixed format. More specifi-
cally, the output of the XMLLayout consists of a series of <log4j:event> elements
as defined in the log4j.dtd. It does not produce a completely well-formed XML file.
The output is designed to be included as an external entity in a separate file in order
to form a correct XML file.

For example, if abc.log is the name of the file where the XMLLayout results go, then
the following file includes it as an external entity:

HTMLLAYOUT 121

<?xml version="1.0" ?>

<!DOCTYPE log4j:eventSet SYSTEM "log4j.dtd" [<!ENTITY data SYSTEM
"abc.log">]>

<log4j:eventSet version="1.2"
 xmlns:log4j="http://jakarta.apache.org/log4j/">
 &data;
</log4j:eventSet>

This approach enforces the independence of the XMLLayout and its containing ap-
pender.

The version attribute helps components to correctly interpret output generated by
XMLLayout. The value of this attribute should be "1.1" for output generated by log4j
versions prior to log4j 1.2 and "1.2" for release 1.2 and later.

The XMLLayout admits a single option LocationInfo:

Option Name Type Description
LocationInfo boolean The LocationInfo option takes a boolean value. If

true, the output includes the caller’s location in-
formation. By default no location information is
included..

An logging event is of level WARN, logger chapter5.Sample with the message
“Hello World.” would be formatted as follows:

<log4j:event logger="chapter5.Sample" timestamp="1025013672760"
level="WARN" thread="main">
<log4j:message><![CDATA[Hello world.]]></log4j:message>
</log4j:event>

Like most XML output, the output of the XMLLayout is usually presented to the user
in a different form after further transformation. The chainsaw tool, part of the log4j
project, can read files produced by XMLLayout and present them to the user in a
Swing table.

HTMLLayout
The HTMLLayout outputs events in a fixed format table. Each row of the table corre-
sponds to an event while five columns: Time, Thread, Level, Category and Message
correspond to member fields of the logging event. Sample configuration files are in-
cluded in the examples/chapter5/ folder.

122 CHAPTER 5: LAYOUT

Figure 5-1: Sample output of HTMLLayout

The HTMLLayout admits a single option, namely LocationInfo.

Option Name Type Description
LocationInfo boolean The LocationInfo option takes a boolean value. If

true, the output includes the caller’s location in-
formation in an additional “File:Line” column. By
default no location information is included.

Title String The title of the generated HTML page.

6.Custom Filters

Have lots of ideas and throw away the bad ones. You
aren’t going to have good ideas unless you have lots of
ideas and some sort of principle of selection.

 Linus Pauling

As we have seen, log4j has several built-in ways for filtering log requests, including
the repository-wide filter, logger-level filter and appender thresholds. These provide
high performance filtering for the most commonly encountered cases. To deal with
more specialized cases log4j offers the generic yet powerful mechanism of custom
filters which are largely inspired from Linux ipchains or iptables in more recent
Linux kernels. Customs filters are based on ternary logic allowing them to be as-
sembled or chained together to compose an arbitrarily complex filtering policy.
Hereto, filters have been an under documented and underemployed log4j feature.

Custom filter classes must derive from the org.apache.log4j.spi.Filter
class.

package org.apache.log4j.spi;

public abstract class Filter implements OptionHandler {

 // point to the next filter in the chain, can be null.
 public Filter next;

 public static final int DENY = -1;
 public static final int NEUTRAL = 0;
 public static final int ACCEPT = 1;

 // a do nothing default implementation
 public void activateOptions() {}

 // The returned value must be one of DENY, NEUTRAL or ACCEPT.
 abstract public int decide(LoggingEvent event);
}

124 CHAPTER 6: CUSTOM FILTERS

This abstract class assumes that filters be organized in a linear chain. Its mem-
ber field next points to the next filter in the chain, or null if there are no
further filters in the chain. Figure 6-1 depicts a sample filter chain consisting of
three filters.

1st
filter

2nd
filter

3rd
filter nullnext nextnext

Figure 6-1: A sample filter chain

Custom filters are based on ternary logic. The decide(LoggingEvent) method
of each filter is called in sequence. This method returns one of the integer con-
stants DENY, NEUTRAL or ACCEPT. If the returned value is DENY, then the log event
is dropped immediately without consulting the remaining filters. If the value returned
is NEUTRAL, then the next filter in the chain is consulted. If there are no further filters
to consult, then the logging event is processed normally. If the returned value is AC-
CEPT, then the logging event is processed immediately without consulting the re-
maining filters

As of log4j 1.2, filters can only added to Appender instances. By adding custom
filters to an appender you can filter event many various criteria such as the contents
of the log message, the contents of the NDC, the time of day or any other part of the
logging event. Log4j ships with several sample filters in the
org.apache.log4j.varia package. The StringMatchFilter filters events
according to the contents of the message, LevelMatchFilter filters events by
level, LevelRangeFilter by a range of levels, and the DenyAllFilter, usually
places at the end of a filter chain, denies all messages.

Here is a filter chain that rejects any message that contains the strings “hot cakes” or
“CPU cycles.”

Example 6-1: Sample filter chain denying events containing the messages “hot cakes” or
“CPU cycles.”

 <filter class="org.apache.log4j.varia.StringMatchFilter">
 <param name="StringToMatch" value="hot cakes" />
 <param name="AcceptOnMatch" value="false" />
 </filter>

 <filter class="org.apache.log4j.varia.StringMatchFilter">
 <param name="StringToMatch" value="CPU cycles" />

HTMLLAYOUT 125

 <param name="AcceptOnMatch" value="false" />
 </filter>

The AcceptOnMatch attribute of StringMatchFilter determines the action to be
taken when a string match occurs. If AcceptOnMatch attribute to true, then the filter
returns the value ACCEPT on a match. Otherwise, If AcceptOnMatch attribute to
false, then the filter returns the value DENY on a match. If there is no match, then the
value NEUTRAL is returned (regardless of the value of AcceptOnMatch attribute).

A given filter chain can only be attached to a given appender. Moreover, in configu-
ration files, filter chains can only be expressed in XML format. Refer to the exam-
ples/chapter6/filter1.xml for a complete filter chain example. Its filter chain is geared
towards the sample application chapter6.Sample1 which incidentally includes log
statements containing the strings “hot cakes” and “CPU cycles.”

The next filter chain accepts events containing the string “teacher” as well as all
events of level info.

Example 6-2: Incomplete filter chain accepting events containing the messages“teacher” or
events of level INFO.

 <filter class="org.apache.log4j.varia.StringMatchFilter">
 <param name="StringToMatch" value="teacher" />
 <param name="AcceptOnMatch" value="true" />
 </filter>
 <filter class="org.apache.log4j.varia.LevelMatchFilter">
 <param name="LevelToMatch" value="info" />
 <param name="AcceptOnMatch" value="true" />
 </filter>

Contrary to the previous filter chain, instead of denying events on match, this chain
accepts events when a match occurs. This filter chain is incorporated in the configu-
ration script filter2.xml. Applying it to chapter6.Sample1 application you will notice
that not only are the designated events allowed through but all other events as well.
Indeed, the filter chain in Example 6-2 is incomplete because it lets certain events
pass through but does not specify the events to block. At the end of the chain, events
that have neither been rejected nor accepted are processed normally – they are im-
plicitly accepted. The following filter chain accepts events containing the string
“teacher” as well as all events of level info but also denies all other events.

Example 6-3 Complete filter chain accepting events containing the messages“teacher” or
events of level INFO and denying all other events.

 <filter class="org.apache.log4j.varia.StringMatchFilter">
 <param name="StringToMatch" value="teacher" />
 <param name="AcceptOnMatch" value="true" />

126 CHAPTER 6: CUSTOM FILTERS

 </filter>
 <filter class="org.apache.log4j.varia.LevelMatchFilter">
 <param name="LevelToMatch" value="info" />
 <param name="AcceptOnMatch" value="true" />
 </filter>

 <filter class="org.apache.log4j.varia.DenyAllFilter"/>

This filter chain differs from the previous one only by the addition of a DenyAll-
Filter at the end of the chain. Typically, chains containing a series of “accepting”
filters are terminated by a DenyAllFilter. The above filter chain is incorporated in
the configuration script filter3.xml.

Configuration files in properties format do not support filter chains. There are no
plans to add such support in the future. In the next version of log4j, the set of avail-
able filters will be widened and each individual filter retrofitted with the ability to act
on negative matches (mismatches) whereas currently shipped filters can only act on
positive matches.

Writing your own filter
The set of filters shipped with log4j is rather basic. Fortunately, writing your own
custom filter is as easy as extending the Filter class by implementing the de-
cide(LoggingEvent) method and a getter/setter method pair for each of your fil-
ter’s options.

Repeat logs, i.e. logging events carrying exactly the same message, are a common-
place phenomenon. Nestor, a wise and resolute java developer, tackles the problem
of repeat logs by writing RepeatFilter:

Example 6-4: RepeatFilter removes repeat messages (examples/chapter6/RepeatFilter.java)

package chapter6;
import org.apache.log4j.spi.Filter;
import org.apache.log4j.spi.LoggingEvent;

public class RepeatFilter extends Filter {

 String lastMessage;
 int repeatCount = 0;
 int toleratedRepeats = 0;

 public int getToleratedRepeats() {
 return toleratedRepeats;
 }
 public void setToleratedRepeats(int toleratedRepeats) {
 this.toleratedRepeats = toleratedRepeats;

WRITING YOUR OWN FILTER 127

 }

 public int decide(LoggingEvent event) {
 // get the rendered (String) form of the message
 String msg = event.getRenderedMessage();

 if(msg == null)
 return Filter.NEUTRAL;

 if(msg.equals(lastMessage)) {
 repeatCount++;
 } else {
 repeatCount = 0;
 }

 lastMessage = msg;

 if(repeatCount > toleratedRepeats) {
 return Filter.DENY;
 } else {
 return Filter.NEUTRAL;
 }
 }
}

The decide method of RepeatFilter checks whether the current event contains
the same message as the message contained in the previous event. If the messages are
the same, the repeatCount variable is incremented; otherwise it is set to zero. The
decide method returns the value NEUTRAL if the current event is not a repeat or if
the number of detected repeats is lower than the number of tolerated repeats as speci-
fied by the ToleratedRepeats option. The decide method returns the value DENY
only in case the number of detected repeats is greater than the number of tolerated
repeats. The number of tolerated repeats is zero by default.

The following filter chain will eliminate all repeats:

<filter class="chapter6.RepeatFilter"/>

Running the chapter6.Sample1 application with the exam-
ples/chapter6/repeat1.xml configuration script, you shall notice that all repeat logs
are removed. The script repeat2.xml, in the same folder, also removes repeat logs but
only after the second occurence.

As a matter of tautology, let me repeat that to implement a custom filter it is suffi-
cient to subclass the org.apache.log4j.spi.Filter class by implementing the
decide(LoggingEvent) method and adding any setter/getter methods as appro-
priate for each filter option.

128 CHAPTER 7: DIAGNOSTIC CONTEXTS

7.Diagnostic Contexts

One of the design goals of log4j is to audit and debug complex distributed applica-
tions. Most real-world distributed systems need to deal with multiple clients simulta-
neously. In a typical multithreaded implementation of such a system, different
threads will handle different clients. A possible but discouraged approach to differen-
tiate the logging output of one client from another is to instantiate a new and separate
logger for each client. This technique promotes the proliferation of loggers and con-
siderably increases management overhead. A lighter technique consists of uniquely
stamping each log request servicing a given client. Neil Harrison described this
method in the book "Patterns for Logging Diagnostic Messages," in Pattern Lan-
guages of Program Design 3, edited by R. Martin, D. Riehle, and F. Buschmann
(Addison-Wesley, 1997). Log4j offers two variants of this technique: Mapped Diag-
nostic Contexts (MDC) and Nested Diagnostic Contexts (NDC).

Mapped Diagnostic Contexts
To uniquely stamp each request, the user puts contextual information into the MDC,
the abbreviation of Mapped Diagnostic Context. The public interface of the MDC class
is shown below.

package org.apache.log4j;

public class MDC {
 // Put a context value (the o parameter) as identified by key into
 // the current thread's context map.
 static void put(String key, Object o);

 // Get the context identified by key.
 static Object get(String key);

 // Remove or clear the context identified by key.
 static void remove(String key)
}

MAPPED DIAGNOSTIC CONTEXTS 129

The MDC class contains only static methods. It lets the developer to place information
in a “diagnostic context” that can be subsequently retrieved by log4j components.
The MDC manages contextual information on a per-thread basis. Typically, while
starting to service a new client request, the developer will insert pertinent contextual
information, such as the client id, client’s IP address, request parameters etc. into
MDC. Log4j components, if appropriately configured, will automatically include this
information in each log entry. The next application SimpleMDC demonstrates this
basic principle.

Example 7-1: A very simple example of MDC usage (examples/chapter7/SimpleMDC .java)

package chapter7;

import org.apache.log4j.Logger;
import org.apache.log4j.MDC;
import org.apache.log4j.ConsoleAppender;
import org.apache.log4j.PatternLayout;

public class SimpleMDC {

 static public void main(String[] args) throws Exception {

 // You can put values in the MDC at any time. We first put the
 // first name
 MDC.put("first", "Dorothy");

 // Configure log4j
 PatternLayout layout=
 new PatternLayout("%c %X{first} %X{last} %m%n");
 ConsoleAppender appender = new ConsoleAppender(layout);
 Logger root = Logger.getRootLogger();
 root.addAppender(appender);

 // get a logger
 Logger logger = Logger.getLogger(SimpleMDC1.class);

 // We now put the last name
 MDC.put("last", "Parker");

 // The most beautiful two words in the English language according
 // to Dorothy Parker:
 logger.info("Check enclosed.");
 logger.debuf("The most beautiful two words in English.”);

 MDC.put("first", "Richard");
 MDC.put("last", "Nixon");
 logger.info("I am not a crook.");
 logger.info("Attributed to the former US president. 17 Nov 1973.");
 }
}

130 CHAPTER 7: DIAGNOSTIC CONTEXTS

The main method starts by associating the value “Dorothy” with the key “first” in the
MDC. You can place as many value/key associations in the MDC as you wish. Mul-
tiple insertions with the same key will overwrite older values. The code then pro-
ceeds to configure log4j. Note the usage of the %X specifier within the PatternLay-
out conversion pattern. The %X conversion specifier is employed twice, once for the
key “first” and once for the key “last”. After configuring the root logger, the code
associated the value “Parker” with the key “last” within the MDC. We then invoke
the logger twice with different messages. The code finishes by setting the MDC to
different values and invoking the logger several times. Running SimpleMDC1 yields:

> java chapter7.SimpleMDC

Dorothy Parker - Check enclosed.
Dorothy Parker - The most beautiful two words in English.
Richard Nixon - I am not a crook.
Richard Nixon - Attributed to the former US president. 17 Nov 1973.

The SimpleMDC application illustrates how log4j layouts, if configured appropri-
ately, automatically output MDC information. Moreover, the information placed into
the MDC can be used by multiple logger invocations.

Mapped Diagnostic Contexts are most beneficial in client server architectures. Typi-
cally, multiple clients will be served by multiple threads on the server. Although the
methods in the MDC class are static, the diagnostic context is managed on a per thread
basis allowing each server thread to bear a distinct MDC stamp. MDC operations such
as put() and get() affect the MDC of the current thread only. The MDC in other
threads remain unaffected. Given that MDC information is managed on a per-thread
basis, each thread will have its own copy of the MDC. Thus, there is no need for the
developer to worry about thread-safety or synchronization issues when programming
with the MDC because it safely handles these issues transparently.

The next example is somewhat more advanced. It shows how the MDC can be used in
a client-server setting. The server-side implements the NumberCruncher interface
shown in Example 7-2 below. The NumberCruncher interface contains a single
method named factor(). Using RMI technology, the clients invokes the fac-
tor() method of the server application to retrieve the distinct factors of an integer.

Example 7-2: The service interface (examples/chapter7/NumberCruncher .java)

package chapter7;

import java.rmi.Remote;
import java.rmi.RemoteException;

MAPPED DIAGNOSTIC CONTEXTS 131

public interface NumberCruncher extends Remote {
 // Return the distinct factors of an integer
 int[] factor(int number) throws RemoteException;
}

The NumberCruncherServer application, listed in Example 7-3 below, implements
the NumberCruncher interface. Its main method exports a RMI Registry on the
local host that accepts requests on a well-known port.

Example 7-3: The server side (examples/chapter7/NumberCruncheServer .java)

package chapter7;

import java.rmi.*;
import java.util.Vector;

import org.apache.log4j.*;
import org.apache.log4j.xml.DOMConfigurator;

public class NumberCruncherServer extends UnicastRemoteObject

implements NumberCruncher {

 static Logger logger = Logger.getLogger(NumberCruncherServer.class);

 public NumberCruncherServer() throws RemoteException {
 }

 public int[] factor(int number) throws RemoteException {

 // The client's host is an important source of information.
 try {
 MDC.put("client", this.getClientHost());
 } catch(java.rmi.server.ServerNotActiveException e) {
 logger.warn("Caught unexpected ServerNotActiveException.", e);
 }

 // The information contained within the request is another source
 // of distinctive information. It might reveal the users name,
 // date of request, request ID etc. In servlet type environments,
 // useful information is contained in the HttpRequest or in the
 // HttpSession.
 MDC.put("number", new Integer(number));

 logger.info("Beginning to factor.");
 if(number <= 0) {
 throw new IllegalArgumentException(number
 +" is not a positive integer.");
 } else if(number == 1) {
 return new int[] {1};
 }

 Vector factors = new Vector();

132 CHAPTER 7: DIAGNOSTIC CONTEXTS

 int n = number;

 for(int i = 2; (i <= n) && (i*i <= number); i++) {
 // It is bad practice to place log statements within tight loops.
 // It is done here to show interleaved log output from
 // different requests.
 logger.debug("Trying to see if " + i + " is a factor.");

 if((n % i) == 0) {
 logger.info("Found factor "+i);
 factors.addElement(new Integer(i));
 do {
 n /= i;
 } while((n % i) == 0);
 }
 // Placing artificial delays in tight-loops will also lead to
 // sub-optimal resuts. :-)
 delay(100);
 }

 if(n != 1) {
 logger.info("Found factor "+n);
 factors.addElement(new Integer(n));
 }

 int len = factors.size();

 int[] result = new int[len];
 for(int i = 0; i < len; i++) {
 result[i] = ((Integer) factors.elementAt(i)).intValue();
 }

 // clean up
 MDC.remove("client");
 MDC.remove("number");

 return result;
 }

 static void usage(String msg) {
 System.err.println(msg);
 System.err.println(
 "Usage: java chapter7.NumberCruncherServer configFile\n"
 + " where configFile is a log4j configuration file.");
 System.exit(1);
 }

 public static void delay(int millis) {
 try{Thread.currentThread().sleep(millis);}
 catch(InterruptedException e) {}
 }

 public static void main(String[] args) {
 if(args.length != 1)

MAPPED DIAGNOSTIC CONTEXTS 133

 usage("Wrong number of arguments.");

 String configFile = args[0];
 if(configFile.endsWith(".xml")) {
 new DOMConfigurator().configure(configFile);
 } else {
 new PropertyConfigurator().configure(configFile);
 }

 NumberCruncherServer ncs;

 try {
 ncs = new NumberCruncherServer();
 logger.info("Creating registry.");
 Registry registry =
 LocateRegistry.createRegistry(Registry.REGISTRY_PORT);
 registry.rebind("Factor", ncs);
 logger.info("NumberCruncherServer bound and ready.");
 } catch(Exception e) {
 logger.error("Could not bind NumberCruncherServer.", e);
 return;
 }
 }
}

The implementation of the factor(int number) method is particularly relevant. It
starts by putting the client’s hostname into the MDC under the key “client”. The
number to factor, as requested by the client, is put into the MDC under the key
“number”. After computing the distinct factors of the integer parameter, the result is
returned to the client. Before returning the result however, the values for the “client”
and “number” are cleared by calling the MDC.remove method. An MDC put opera-
tion should be balanced by the corresponding remove() operation. Otherwise, the
MDC will contain stale values for certain keys. I would recommended that whenever
possible remove() operations be performed within finally blocks, ensuring their
invocation regardless of the execution path of your code.

After these theoretical explanations, we are ready to run the number cruncher exam-
ple. Start the server with the following command:

java chapter7.NumberCruncherServer chapter7/mdc1.properties

The configuration file mdc1.properties is listed below.

log4j.rootLogger=debug, CON
log4j.appender.CON=org.apache.log4j.ConsoleAppender
log4j.appender.CON.layout=org.apache.log4j.PatternLayout
log4j.appender.CON.layout.ConversionPattern=%-4r [%t] %-5p \
 C:%X{client} N:%X{number} - %m%n

134 CHAPTER 7: DIAGNOSTIC CONTEXTS

Note the use of the %X conversion specifier within the ConversionPattern option.

The following command starts an instance of NumberCruncherClient application:

java chapter7.NumberCruncherClient hostname

where hostname is the host where the NumberCruncherServer is running.

Executing multiple instances of the client and requesting the server to factor the
numbers 129 from the first client and very shortly thereafter the number 71 from the
second client, the server outputs the following (edited to fit):

0 [main] INFO C: N: - Creating registry.
20 [main] INFO C: N: - NumberCruncherServer bound and ready.
57213 [RMI Connection(11)] INFO C:eitan N:129 - Beginning to factor.
57213 [RMI Connection(11)] DEBUG C:eitan N:129 - Trying 2 as a factor.
57313 [RMI Connection(11)] DEBUG C:eitan N:129 - Trying 3 as a factor.
57313 [RMI Connection(11)] INFO C:eitan N:129 - Found factor 3
57413 [RMI Connection(11)] DEBUG C:eitan N:129 - Trying 4 as a factor.
57513 [RMI Connection(11)] DEBUG C:eitan N:129 - Trying 5 as a factor.
57613 [RMI Connection(11)] DEBUG C:eitan N:129 - Trying 6 as a factor.
57703 [RMI Connection(12)] INFO C:eitan N:71 - Beginning to factor.
57703 [RMI Connection(12)] DEBUG C:eitan N:71 - Trying 2 as a factor.
57713 [RMI Connection(11)] DEBUG C:eitan N:129 - Trying 7 as a factor.
57803 [RMI Connection(12)] DEBUG C:eitan N:71 - Trying 3 as a factor.
57813 [RMI Connection(11)] DEBUG C:eitan N:129 - Trying 8 as a factor.
57904 [RMI Connection(12)] DEBUG C:eitan N:71 - Trying 4 as a factor.
57914 [RMI Connection(11)] DEBUG C:eitan N:129 - Trying 9 as a factor.
58004 [RMI Connection(12)] DEBUG C:eitan N:71 - Trying 5 as a factor.
58014 [RMI Connection(11)] DEBUG C:eitan N:129 - Trying 10 as a factor.
58104 [RMI Connection(12)] DEBUG C:eitan N:71 - Trying 6 as a factor.
58114 [RMI Connection(11)] DEBUG C:eitan N:129 - Trying 11a factor.
58204 [RMI Connection(12)] DEBUG C:eitan N:71 - Trying 7 as a factor.
58214 [RMI Connection(11)] INFO C:eitan N:129 - Found factor 43
58304 [RMI Connection(12)] DEBUG C:eitan N:71 - Trying 8 as a factor.
58404 [RMI Connection(12)] INFO C:eitan N:71 - Found factor 71

The clients were run from a machine called “eitan” as can be seen in the above out-
put. Even if the server process the requests of the clients near-simultaneously by
separate threads, the logging output pertaining to each client request can be distin-
guished by studying the output of the MDC, in particular the stamp associated with
“number”, that is the number to factor. The attentive reader would observe that the
thread name could also have been used to distinguish each request. The thread name
can cause confusion if the technology used on the server side recycles threads. In that
case, it may be hard to determine the boundaries of each request, that is, when a
given thread finishes servicing a request and when it begins servicing the next.
Given that the MDC is under the control of the application developer, MDC stamps do
no suffer from this problem.

NESTED DIAGNOSTIC CONTEXTS 135

The MDC class requires JDK 1.2 or above. Under JDK 1.1 the MDC will always return
empty values but otherwise will not affect or harm your application.

Nested Diagnostic Contexts
The NDC, the abbreviation of Nested Diagnostic Context, closely resembles the MDC.
The NDC manages information on a per-thread basis but as a stack, not a map. The
salient methods of the NDC class are listed below.

 public class NDC {

 // Add diagnostic context for the current thread.
 public static void push(String message);

 // Remove the top of the context from the NDC.
 public static String pop();

 // Remove the diagnostic context for this thread.
 public static void remove();
 }

The NDC is managed per thread as a stack of contextual information. Note that all
methods of the org.apache.log4j.NDC class are static. Assuming that NDC print-
ing is turned on, every time a log request is made, the appropriate log4j component
will include the entire NDC stack for the current thread in the log output. This is done
without the intervention of the user, who is responsible only for placing the correct
information in the NDC by using the push() and pop() methods at a few well-
defined points in the code.

Given that NDC information is managed on a per-thread basis, each thread will have
its own copy of the NDC. NDC operations such as push and pop affect the NDC of the
current thread only. The NDC in other threads remain unaffected. Thus, there is no
need for the developer to worry about thread-safety or synchronization issues when
programming with the NDC because it safely handles these issues transparently.

We now list an NDC version of Example 7-1 which we studied earlier.

Example 7-4: A very simple example of MDC usage (examples/chapter7/SimpleNDC .java)

package chapter7;

import org.apache.log4j.Logger;
import org.apache.log4j.NDC;
import org.apache.log4j.ConsoleAppender;
import org.apache.log4j.PatternLayout;

136 CHAPTER 7: DIAGNOSTIC CONTEXTS

public class SimpleNDC {

 static public void main(String[] args) throws Exception {

 // Configure log4j, note the %x conversion specifier.
 PatternLayout layout = new PatternLayout("%x - %m%n");
 ConsoleAppender appender = new ConsoleAppender(layout);
 Logger root = Logger.getRootLogger();
 root.addAppender(appender);

 // get a logger
 Logger logger = Logger.getLogger(SimpleNDC.class);

 NDC.push("Dorothy");
 NDC.push("Parker");
 logger.info("Check enclosed.");
 logger.info("The most beautiful two words in English.");
 NDC.pop();
 NDC.pop(); // we need to pop twice because we pushed twice.

 NDC.push("Richard Nixon");
 logger.info("I am not a crook.");
 logger.info("Attributed to the former US president. 17 Nov 1973.");
 NDC.pop(); // pop once, because we pushed only once.

 NDC.remove();
 }
}

Executing the chapter7.SimpleNDC application will yield the following output.

Dorothy Parker - Check enclosed.
Dorothy Parker - The most beautiful two words in English.
Richard Nixon - I am not a crook.
Richard Nixon - Attributed to the former US president. 17 Nov 1973.

Note that the %x conversion specifier in PatternLayout displays the full contents
of the NDC, not just the top value. Moreover, NDC push operations must be balanced
by an equal number of pop operations. Otherwise, the NDC will contain inaccurate
information. I would recommended that whenever possible pop() operations be per-
formed within finally blocks. This ensures that pops are performed correctly re-
gardless of the execution path of your code.

Heavy duty systems should call the remove() method when leaving the run method
of a thread. This ensures that the memory used by the thread can be freed by the Java
garbage collector. Each thread that created a diagnostic context by calling
NDC.push() should call this method before exiting. Otherwise, the memory used by

NESTED DIAGNOSTIC CONTEXTS 137

the entire thread20 cannot be reclaimed by the VM garbage collector. Thus, if your
application creates and destroys threads dynamically, your application will soon run
out of memory. As this is such an important problem in heavy duty systems and be-
cause it is difficult to always guarantee that the remove method is called before exit-
ing a thread, this method has been augmented to lazily remove references to dead
threads. In practice, this means that you can be a little sloppy and occasionally forget
to call remove() before exiting a thread. However, you must call the remove()
method once in a while. If you never call it, then your application will eventually run
out of memory.

Contrary to the MDC which requires JDK 1.2, the NDC class remains compatible with
JDK 1.1 or above. Given that the next version of log4j, namely version 1.3, will be
based on JDK 1.2, the NDC.remove() method will become obsolete.

20 Each and every Java thread consumes approximately 4MB of memory.

8.Extending log4j

It is not knowledge, but the act of learning, not possession but the
act of getting there, which grants the greatest enjoyment. When I
have clarified and exhausted a subject, then I turn away from it,
in order to go into darkness again; the never-satisfied man is so
strange if he has completed a structure, then it is not in order to
dwell in it peacefully, but in order to begin another. I imagine the
world conqueror must feel thus, who, after one kingdom is
scarcely conquered, stretches out his arms for others.

Karl Friedrich Gauss, Letter to Bolyai, 1808.

Style, like sheer silk, too often hides eczema.
Albert Camus, The Fall

The imaginative power of an unstructured community well exceeds that of dedicated
but necessarily few developers. Recognizing this fact and as an open source project
log4j strives21 to be as extensible as possible in order to unleash the creative minds of
its community. Earlier chapters have touched the topic of custom appenders and cus-
tom layouts. Custom appenders and layouts merely leverage log4j’s modular design.
However, many users frequently express their desire to extend the core classes in
log4j. Other concerns such as overall reliability and backward compatibility often
enter in conflict with demands for extensibility. The tug-of-war between the forces of
change and the forces of stability can be observed in other frameworks as well. This
chapter presents ways of extending core log4j classes. It will also mention the cave-
ats of each extension.

21 I say “strives” because engineering a truly extensible framework takes considerably more
effort than manufacturing an otherwise useful library.

WRITING YOUR OWN LEVELS 139

Writing your own Levels
The set of pre-built levels in log4j, that is OFF, FATAL, ERROR, WARN, INFO, DEBUG,
ALL is purposefully small. Conjugated with the logger hierarchy the limited set of
levels offers ample flexibility in categorizing log statements. A larger set often ends
of confusing developers instead doing any good. Take for example the set of levels
defined in the venerable Syslog logging utility found in Unix operating systems. The
Syslog levels are listed below.

#define EMERG 0 /* system is unusable */
#define ALERT 1 /* action must be taken immediately */
#define CRIT 2 /* critical conditions */
#define ERR 3 /* error conditions */
#define WARNING 4 /* warning conditions */
#define NOTICE 5 /* normal but significant condition */
#define INFO 6 /* informational */
#define DEBUG 7 /* debug-level messages */

I personally find it hard to distinguish between the NOTICE and INFO levels or be-
tween the EMERG, ALERT and CRIT levels. While is may be justified to define
new levels under certain circumstances, a larger set of levels is not necessarily better.

In log4j, each level has a string representation which matches the name of the level.
For example, for the level INFO the string representation is “INFO”. Most impor-
tantly however, levels are ordered according to their severity. For example, the level
WARN holds a higher severity than INFO. When adding a new level, the foremost
question you must ask yourself is the severity of the new level compared to the exist-
ing levels. If the question cannot be answered easily, then you should probably dis-
miss the new level.

Log4j users frequently advocate the addition of a new level, namely the TRACE level,
possessing a lower severity than the existing DEBUG level. These users claim that the
TRACE level would allow developers to categorize less important debugging mes-
sages. Given that the constructor in the Level class is protected, new levels can
only be added by sub-classing the Level class. The XLevel class listed below ex-
tends Logger, hence its name. Its purpose is to add a new level called TRACE.

Example 8-1: Adding the TRACE level (examples/chapter8/XLevel .java)

package chapter8;
import org.apache.log4j.Level;

/**
 * The XLevel class extends the Level class by introducing a new

140 CHAPTER 8: EXTENDING LOG4J

 * level called TRACE. TRACE has a lower level than DEBUG. */
 public class final XLevel extends Level {

 static public final int TRACE_INT = Level.DEBUG_INT - 1;
 private static String TRACE_STR = "TRACE";
 public static final XLevel TRACE = new XLevel(TRACE_INT,
 TRACE_STR, 7);

 protected XLevel(int level, String strLevel, int syslogEquiv) {
 super(level, strLevel, syslogEquiv);
 }

 /**
 * Convert the String argument to a level. If the conversion
 * fails then this method returns {@link #TRACE}. */
 public static Level toLevel(String sArg) {
 return (Level) toLevel(sArg, XLevel.TRACE);
 }

 /**
 * Convert the String argument to a level. If the conversion
 * fails, return the level specified by the second argument,
 * i.e. defaultValue. */
 public static Level toLevel(String sArg, Level defaultValue) {
 if(sArg == null) {
 return defaultValue;
 }
 String stringVal = sArg.toUpperCase();

 if(stringVal.equals(TRACE_STR)) {
 return XLevel.TRACE;
 }
 return Level.toLevel(sArg, (Level) defaultValue);
 }

 /**
 * Convert an integer passed as argument to a level. If the
 * conversion fails, then this method returns {@link #DEBUG}.
 * */
 public static Level toLevel(int i)
 throws IllegalArgumentException {
 if(i == TRACE_INT) {
 return XLevel.TRACE;
 } else {
 return Level.toLevel(i);
 }
 }
}

WRITING YOUR OWN LEVELS 141

The XLevel class begins by defining the integer and string representation for the
TRACE level. The integer field TRACE_INT takes a value just under that of DE-
BUG_INT. The TRACE field holds our newly defined level. It is marked as public,
final and static. Given that the constructor of the XLevel class is protected it can
only be called within the XLevel class or from within sub-classes.

After instantiating the TRACE field, the XLevel class proceeds to implement three
conversion methods all named toLevel(), but with different signatures. These
methods convert incoming integer or string parameters and return the corresponding
Level instances. These methods directly convert to TRACE while most of the con-
version work is delegated to the conversion methods of the parent class.

You can pass the XLevel.TRACE object wherever a level object is expected. In par-
ticular, the Logger.log methods are specifically designed to deal with custom lev-
els. In configuration files, a custom level value can be specified in the form
“level#classname” which translates to “trace#chapter8.XLevel” in our case. In the
next example, we make use of the custom level TRACE.

Example 8-2: Using the TRACE level (examples/chapter8/UsingTrace .java)

package chapter8;
import chapter8.XLevel;
import org.apache.log4j.Logger;
import org.apache.log4j.PropertyConfigurator;
import org.apache.log4j.xml.DOMConfigurator;

public class UsingTrace {
 final static Logger logger = Logger.getLogger(UsingTrace.class);

 public static void main(String[] args) {
 if(args.length != 1) {
 System.err.println("Usage: java chapter8.UsingTrace "
 + "configFile");
 System.exit(1);
 }
 String configFile = args[0];
 if(configFile.endsWith(".xml")) {
 new DOMConfigurator().configure(configFile);
 } else {
 new PropertyConfigurator().configure(configFile);
 }
 logger.debug("Now there are fields where Troy once was.");
 logger.log(XLevel.TRACE, "Thus, Troy has left no tangible
 + " trace.");

142 CHAPTER 8: EXTENDING LOG4J

 }
}

Invoking the UsingTrace application with the configuration file exam-
ples/chapter8/trace1.properties will yield the following output:

DEBUG - Now there are fields where Troy once was.
TRACE - Thus, Troy has left no tangible trace.

The configuration file examples/chapter8/trace1.properties is listed next.

log4j.rootLogger=TRACE#chapter8.XLevel, CON
log4j.appender.CON=org.apache.log4j.ConsoleAppender
log4j.appender.CON.layout=org.apache.log4j.PatternLayout
log4j.appender.CON.layout.ConversionPattern=%-5p - %m%n

 Its XML equivalent is:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration

xmlns:log4j='http://jakarta.apache.org/log4j/'>

 <appender name="STDOUT"
 class="org.apache.log4j.ConsoleAppender">
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%-5p - %m%n"/>
 </layout>
 </appender>
 <root>
 <level value ="trace#chapter8.XLevel"/>
 <appender-ref ref="STDOUT"/>
 </root>
</log4j:configuration>

The level element can also be written as:

 <level value ="trace" class="chapter8.XLevel"/>

Had we not set the root level to TRACE but left at its default value, i.e. DEBUG, then
the trace statement would not have appeared on the console.

Once defined, log4j treats custom levels the same way as the built-in levels. Custom
levels can appear in configuration files. They can be passed as arguments to custom
filters or serialized across the wire. Given that Java is a strongly typed language,

WRITING YOUR OWN LOGGER CLASS 143

log4j cannot transparently add printing methods associated with the new level. In
other words, the trace() method does not magically appear in the Logger class.
One must use the generic log() method instead. This limitation can be circum-
vented by either extending the Logger class or wrapping the Logger class. Each
approach has its own advantages and disadvantages.

Writing your own Logger class
Object oriented languages offer built-in means for extending functionality of any
class by derivation or sub-classing. Most developers are drawn to programming be-
cause of their curiosity and their innate inclination to tinkering. Shortly after getting
familiar with log4j, many developers start imagining new ways for extending log4j
functionality. Given that the Logger class plays a central role within the log4j
framework, extending the Logger class appears as the most obvious approach to
implementing any new desired core functionality. Although natural, sub-classing the
Logger class conceals a severe pitfall as we shall now illustrate.

Assume MyLogger class extends Logger by adding a new method called foo().
Given that the foo() method is only available to MyLogger objects, code wishing to
invoke the foo() method must make sure to get a handle to a MyLogger object. Let
us also assume the existence of a factory method, say getMyLogger, in the MyLog-
ger class. The return type of this factory method can be Logger or MyLogger.
Suppose the returned type is MyLogger. In that case, the typical usage pattern would
be:

MyLogger ml = MyLogger.getMyLogger("x.y.z");
ml.foo(....);

Now assume some code instantiates the “x.y.z” logger before MyLog-
ger.getMyLogger is called. As in,

Logger 1 = Logger.getLogger("x.y.z");
MyLogger ml = MyLogger.getMyLogger("x.y.z");

Unless MyLogger objects live detached and independent lives form log4j’s named
hierarchy, the second line of code cannot possibly succeed because the “x.y.z” logger
is already created. It is necessarily of type Logger. Remember that when asked to
manufacture a logger with a certain name, log4j will return a reference to any exist-
ing logger of that name. This functionality is at the core of log4j. It cannot be modi-
fied without tearing apart the hierarchical arrangement of loggers.

144 CHAPTER 8: EXTENDING LOG4J

The problem does not get any more solvable had we assumed that the return type of
getMyLogger was Logger. The following code would systematically throw a
ClassCastException.

 Logger l = Logger.getLogger("bad");
 MyLogger ml = (MyLogger) MyLogger.getLogger("bad"); // causes CCE

The problem occurs because the invocation of the getMyLogger method will re-
trieve the Logger created by earlier getLogger invocation. This instance is a Log-
ger object and cannot be cast as MyLogger.

To alleviate the pain caused by debilitating class cast exceptions, earlier versions of
log4j introduced configuration directives which cause configurators to set the logger
factory forcing the production of loggers of the desired type. This solution works as
long as the application developer controls the java code as well as the log4j configu-
ration files. Unfortunately, most developers do not enjoy this luxury. As we have
seen in Chapter 3, the configuration of log4j is the responsibility of the end-user or
more generally the application deployer. Experience, often bitter, has revealed that
permitting configuration files to set the logger factory was an unsafe practice. Con-
sequently, this manual shies away from providing the syntax for specifying the log-
ger factory in configuration files. We will introduce a safer and more powerful, albeit
more complicated sub-classing architecture later in this chapter.

The crucial point to retain from the above discussion is that modifying the interface
of the Logger class through sub-classing is inherently unsafe. I strongly discourage
developers from sub-classing the Logger class in order to modify its interface.
However, sub-classing can be used to modify the behavior of existing Logger meth-
ods as long as no methods are added or removed, nor their signatures modified.

However, the interface of the Logger class can be safely modified by encapsulation
a.k.a. wrapping.

Wrapping the Logger class
The decorator or wrapper design pattern provides a common alternative to sub-
classing in order to attach new responsibilities to objects. The oft-cited “Design Pat-
tern” book by Eric Gamma et al. formally describes the pattern. Wrappers can be
used to add responsibilities to individual objects dynamically and transparently or to
withdraw responsibilities. Wrappers can save the day when extension by sub-classing
is impractical, which happens to be the case for the Logger class.

The wrapper encloses the component to be extended. Wrapper must also conform to
match the interface of the wrapped object such that wrapper objects can be transpar-

WRAPPING THE LOGGER CLASS 145

ently interchanged with the original object. However, since the Logger is a class and
not an interface, and because it cannot be easily sub-classed, Logger wrappers can
not act as a transparent enclosure. This hardly appears to be a serious issue because
Logger objects rarely act as data types or subjects of transformations. One usually
invokes logger objects not act on them. Thus, I will continue to use the term wrapper
even if it does not match the formal definition of the pattern.

A Logger wrapper can serve many purposes. For example, it can

• add new methods to handle custom levels

• remove seldom used methods which clutter the Logger class

• automatically handle nested exceptions

• add internationalization features beyond those already supported in the Logger
class

These are just a few reasons for extending the Logger class. One could imagine
many other valid ones.

Developers have not waited for the appearance of this manual to write wrappers. I
frequently receive email where a user runs into a problem with their wrapper and re-
quests help. More often than not, these wrappers contain errors such that the cost of
inactive (or disabled) logging statements is multiplied by a factor of 1'000 (one thou-
sand) compared to direct log4j usage. The most common error in wrapper classes is
the invocation of the Logger.getLogger() method for each log request. Repeat-
edly retrieving loggers is guaranteed to wreak havoc on your application's perform-
ance. Really!

For didactical purposes, let us write a wrapper class that adds support for the TRACE
custom level created earlier. Let MyLogger be the name of this wrapper. To spice up
the exercise, MyLogger will also automatically print nested exceptions.

Example 8-3: Our first wrapper (examples/chapter/MyLogger.java)

package chapter8;

import chapter8.XLevel;
import org.apache.log4j.Logger;
import org.apache.log4j.Level;
import org.apache.log4j.PropertyConfigurator;
import org.apache.log4j.xml.DOMConfigurator;
import java.lang.reflect.Method;

146 CHAPTER 8: EXTENDING LOG4J

public class MyLogger {
 // Our fully qualified class name.
 static String FQCN = MyLogger.class.getName();
 static boolean JDK14 = false;

 static {
 String version = System.getProperty("java.version");
 if(version != null) {
 JDK14 = version.startsWith("1.4");
 }
 }

 private Logger logger;

 public MyLogger(String name) {
 this.logger = Logger.getLogger(name);
 }

 public MyLogger(Class clazz) {
 this(clazz.getName());
 }

 public void trace(Object msg) {
 logger.log(FQCN, XLevel.TRACE, msg, null);
 }
 public void trace(Object msg, Throwable t) {
 logger.log(FQCN, XLevel.TRACE, msg, t);
 logNestedException(XLevel.TRACE, msg, t);
 }
 public boolean isTraceEnabled() {
 return logger.isEnabledFor(XLevel.TRACE);
 }

 public void debug(Object msg) {
 logger.log(FQCN, Level.DEBUG, msg, null);
 }
 public void debug(Object msg, Throwable t) {
 logger.log(FQCN, Level.DEBUG, msg, t);
 logNestedException(Level.DEBUG, msg, t);
 }
 public boolean isDebugEnabled() {
 return logger.isDebugEnabled();
 }

 public void info(Object msg) {
 logger.log(FQCN, Level.INFO, msg, null);
 }

WRAPPING THE LOGGER CLASS 147

 public void info(Object msg, Throwable t) {
 logger.log(FQCN, Level.INFO, msg, t);
 logNestedException(Level.INFO, msg, t);
 }
 public boolean isInfoEnabled() {
 return logger.isInfoEnabled();
 }

 public void warn(Object msg) {
 logger.log(FQCN, Level.WARN, msg, null);
 }
 public void warn(Object msg, Throwable t) {
 logger.log(FQCN, Level.WARN, msg, t);
 logNestedException(Level.WARN, msg, t);
 }

 public void error(Object msg) {
 logger.log(FQCN, Level.ERROR, msg, null);
 }
 public void error(Object msg, Throwable t) {
 logger.log(FQCN, Level.ERROR, msg, t);
 logNestedException(Level.ERROR, msg, t);
 }

 public void fatal(Object msg) {
 logger.log(FQCN, Level.FATAL, msg, null);
 }
 public void fatal(Object msg, Throwable t) {
 logger.log(FQCN, Level.FATAL, msg, t);
 logNestedException(Level.FATAL, msg, t);
 }

 void logNestedException(Level level, Object msg, Throwable t) {
 if(t == null)
 return;

 try {
 Class tC = t.getClass();
 Method mA[] = tC.getMethods();
 Method nextThrowableMethod = null;
 for(int i=0; i < mA.length ; i++) {
 if(("getCause".equals(mA[i].getName()) && !JDK14)
 || "getRootCause".equals(mA[i].getName())
 || "getNextException".equals(mA[i].getName())
 || "getException".equals(mA[i].getName())) {
 // check param types
 Class params[]=mA[i].getParameterTypes();
 if(params==null || params.length==0) {

148 CHAPTER 8: EXTENDING LOG4J

 nextThrowableMethod=mA[i];
 break;
 }
 }
 }

 if(nextThrowableMethod != null) {
 Throwable next =
 (Throwable)nextThrowableMethod.invoke(t, new Object[0]);
 if(nextT != null) {
 this.logger.log(FQCN, level, "Previous log CONTINUED",
 nextT);
 }
 }
 } catch(Exception e) {
 // do nothing
 }
 }
}

There are several noteworthy points about MyLogger. For starters, it does not derive
from Logger. Instead, each instance of MyLogger encapsulates a logger instance.
The encapsulated logger instance is marked as private final. The logger field is as-
signed within the MyLogger constructors. Here are the relevant lines from MyLog-
ger.java.

 private final Logger logger;

 public MyLogger(String name) {
 this.logger = Logger.getLogger(name);
 }

 public MyLogger(Class clazz) {
 this(clazz.getName());
 }

The reference to the enclosed logger object is obtained by invoking the Log-
ger.getLogger method. However, this is done only once within the lifetime of a
MyLogger object. Assuming most MyLogger variables are class static, MyLogger
constructor will not be called often enough to degrade performance.

The mysterious FCQN variable, declared at the start of MyLogger class, helps log4j to
obtain the correct localization information, as output by the %F, %C, %L, %F con-
version specifiers in PatternLayout. Without it log4j will be tricked into thinking
that MyLogger is the caller instead of the correct class which invoked a MyLogger

WRAPPING THE LOGGER CLASS 149

instance. The printing methods in MyLogger simply forward the work the enclosed
logger object. Here is how the debug method does it.

 public void debug(Object msg) {
 logger.log(FQCN, Level.DEBUG, msg, null);
 }

The debug method does not call its namesake in the Logger class. It calls the generic
Logger.log() method which accepts the FCQN variable as a parameter. The case of
the trace method is fairly similar. It passes the custom level XLevel.TRACE as a
level parameter; otherwise, it is no different from the other printing methods in My-
Logger.

 public void trace(Object msg) {
 logger.log(FQCN, XLevel.TRACE, msg, null);
 }

For each of the printing methods in the Logger class there is a variant that takes a
throwable as a second parameter. MyLogger offers the same variants but these be-
have somewhat differently. If the throwable parameter contains a nested exception, it
will be automatically printed in a separate logging statement by calling the
logNestedException method. As in,

 public void error(Object msg, Throwable t) {
 logger.log(FQCN, Level.ERROR, msg, t);
 logNestedException(Level.ERROR, msg, t);
 }

Nested exceptions are discovered by studying the class throwable object using reflec-
tion. When a nested exception is available, then the logNestedException method
invokes the generic log method of the encapsulated logger with the nested exception
as the last parameter. The nested exception returned by the getCause method, if it
exists, is ignored under JDK 1.4 because this version of the JDK has built-in support
nested exceptions.

Our wrapper can be used almost the same way as the original Logger class as illus-
trated by the UsingMyLogger application.

Example 8-4: Using our wrapper (examples/chapter8/UsingMyLogger.java)

package chapter8;

import chapter8.XLevel;
import org.apache.log4j.Logger;
import org.apache.log4j.PropertyConfigurator;

150 CHAPTER 8: EXTENDING LOG4J

import org.apache.log4j.xml.DOMConfigurator;

public class UsingMyLogger {
 final static MyLogger logger =
 new MyLogger(UsingMyLogger.class);

 public static void main(String[] args) {
 if(args.length != 1) {
 System.err.println("Usage: java chapter8.UsingMyLogger "
 + " configFile");
 System.exit(1);
 }
 String configFile = args[0];
 if(configFile.endsWith(".xml")) {
 new DOMConfigurator().configure(configFile);
 } else {
 new PropertyConfigurator().configure(configFile);
 }

 logger.trace("Hello from a MyLogger.");
 logger.warn("Here is a nested exception.)",
 new NestedException(new Exception("Root cause")));
 }
}

The code of the NestedException class is trivial. It is listed below for complete-
ness.

class NestedException extends Exception {
 private Throwable cause;

 NestedException(Exception cause) {
 super();
 this.cause = cause;
 }

 public Throwable getCause() {
 return cause;
 }
}

Running UsingMyLogger application with the following configuration file

Example 8-5: Configuration with caller information (examples/chapter8/myLogger1.properties)

log4j.rootLogger=TRACE#chapter8.XLevel, CON
log4j.appender.CON=org.apache.log4j.ConsoleAppender
log4j.appender.CON.layout=org.apache.log4j.PatternLayout

WRAPPING THE LOGGER CLASS 151

log4j.appender.CON.layout.ConversionPattern=%-5p (%C:%L) - %m%n

will result in the following output:

TRACE (chapter8.UsingMyLogger:24) - Hello from a MyLogger.
WARN (chapter8.UsingMyLogger:25) - Here is a nested exception.
chapter8.NestedException
 at chapter8.UsingMyLogger.main(UsingMyLogger.java:25)
WARN (chapter8.UsingMyLogger:25) - Previous log CONTINUED:
java.lang.Exception: Root cause
 at chapter8.UsingMyLogger.main(UsingMyLogger.java:25)

Comments on the Jakarta commons-logging package

Given that log4j is such a low-level library, most organizations are hesitant to tie
their code to log4j, especially considering the new logging API included in JDK 1.4.

Before going forward, it is appropriate to mention that these two APIs are very simi-
lar. The classical usage pattern for log4j is:

import org.apache.log4j.Logger;

public class MyClass {
 final static Logger logger = Logger.getLogger("some.name");

 public void foo1() {
 logger.debug("Hello world.");
 }

 public void foo2() {
 logger.info("Another message.");
 logger.error("Stop that!",
 new Exception("The earth is getting warmer."));
 }
}

As you are well aware by now, one of the important benefits of log4j is that it can be
configured at run time using configuration scripts. You can have hundreds or thou-
sands of log statement but only one or two lines of Java code to configure log4j.

The usage pattern for the JDK 1.4 logging API is:

import java.util.logging.Logger;

public class MyClass {
 final static Logger logger = Logger.getLogger("test");

 public void foo1() {
 logger.debug("Hello world.");

152 CHAPTER 8: EXTENDING LOG4J

 }

 public void foo2() {
 logger.info("Another message.");
 logger.error("Stop that!",
 new Exception("The earth is getting warmer."));
 }
}

Although the log4j API is at least two years older than JDK 1.4, notice the extent to
which the two APIs are similar. The JDK 1.4 logging API also supports configura-
tion scripts. Being part of the JDK, some users reckon that the JSR47 API will sup-
plant log4j some time in the near future. Surprisingly enough, it is not easy to write a
complete logging API. Users come to realize they need the features present in log4j
but absent in JDK 1.4 logging. Moreover, log4j runs under JDK 1.1 or later whereas
JDK 1.4 logging requires, well, JDK 1.4. Most users can't afford to tie their code to
JDK 1.4. But they need logging and they need it now. A common strategy for pro-
tecting against future changes and at the same time to benefit from existing log4j fea-
tures is to wrap log4j with a custom logging API.

The commons-logging API has gained popularity because wraps multiple logging
frameworks postponing the choice of the underlying logging API to the latest possi-
ble moment, that is, to runtime. It is available at http://jakarta.apache.org/commons/-
logging.html.

The choice of the framework is delegated to a “discovery process” depending on the
resources available to a particular class loader. The commons-logging API will create
its own logger wrapper for each and every class loader in use within your applica-
tion. Any solution that depends on the structure of the class loader hierarchy is bound
to be brittle. Most users are not equipped to deal with class loader problems. Dealing
with class loader related problems requires that the developer understands class load-
ers as well as the class loader hierarchy of her particular J2EE container. Moreover,
different J2EE containers exhibit different class loading behaviors. In some cases,
different versions of the same container behave differently. The “discovery process”
is the major weakness of the commons-logging API because it results in a significant
jump in complexity.

Since the primary goal of the commons-logging API is to discover and use the log-
ging framework that is available at runtime, it can only cater for lowest common de-
nominator of the different logging frameworks. As JDK 1.4 logging does not offer
the same set of features as log4j, by using the common-logging API you would be
missing those extra features, such as logging domains22, Nested Diagnostic Contexts

22 Domains are a very useful feature planned for log4j version 1.3.

THE WIDER CONTEXT 153

(NDC) and Mapped Diagnostic Contexts (MDC) which are essential features in
server-type applications.

Unexpected interactions between log4j and a commons-logging wrapper API are also
quite probable. The developers of the wrapper will suspect a log4j problem and con-
versely the log4j developers will suspect a wrapper problem. By increasing the num-
ber of components required for logging the probability of bugs increases while the
difficulty of resolving them increases by a higher factor. My main argument against
wrappers is the increased complexity of the resulting logging component. The justifi-
cation for the existence of logging in the first place is to facilitate problem identifica-
tion. As such, the logging component must be robust and simple to set up. The more
complex the logging component gets, the less useful it becomes. Logging is rarely
the main focus of an application. Experience shows that if setting up logging in-
volves many steps or consumes too much time, software developers and users simply
begin ignoring the logging component. Logging must be simple to be useful.

Remember that the initial goal of introducing the commons-logging wrapper API
was to protect your coding investment. If for whatever reason you decide to drop
log4j in favor of JDK 1.4 (or the other way around) a simple string search-and-
replace operation will do. Most modern IDEs support search-and-replace operations
on multiple files. Given the above, my advice to you is to think twice before rushing
to adopt the commons-logging API. I should emphasize that the commons-logging
API is quite log4j friendly. For example, the current implementation will first search
for log4j by default. The commons-logging API has probably facilitated the adoption
of log4j by many users, especially through Tomcat and Struts. All the more, I remain
worried about the unfavorable user experience.

The wider context
The intended audience of this section is the authors of Application Servers, Servlet
Containers and authors of general-purpose libraries.

Log4j is a low level API used in a variety of projects. Consequently, it is hard to
make a priori assumptions about the environment where log4j will run. The problem
is particularly acute in embedded components (e.g. libraries) that rely on log4j for
their logging. The author of embedded component can rarely afford to make restric-
tive assumptions about the surrounding environment, a fortiori assumptions about
logging.

The “logging separation” problem

Since time immemorial users have struggled to control the logging configuration of
multiple web-applications deployed on the same Servlet Container (e.g. Tomcat).

154 CHAPTER 8: EXTENDING LOG4J

What does separation of logging mean? In a separated logging environment, each
web-application can configure log4j in different ways such that the configuration of
one web-application cannot interfere with the logging configuration of another web-
application. A variant of this problem is the separation of web-application logging
and the logging by the container itself. The problem extends by analogy to EJB con-
tainers.

When we talk about logging separation the following cases must be taken into con-
sideration:

• Servlet classes that are used in a single web-application (unshared servlets). More
generally, libraries or classes that are used by one and only one web-application
(unshared libraries).

• Servlet classes that are used in a multiple web-applications (shared servlets). More
generally, libraries or classes that are shared between multiple web-applications
(shared libraries).

• Loggers which are class static variables.

• Loggers which are instance variables of the containing class.

• Loggers which are local variables of the containing class method.

In case logging separation cannot be achieved for a particular case, this must be well
documented such that users become aware of potential problems and possibly avoid
troublesome cases altogether. Let us study a number of possible solutions that ad-
dress the “logging separation” problem.

First Solution

Assuming each web-application is loaded by a distinct class loader, then placing a
copy of log4j.jar under WEB-INF/lib/ directory of each web-application will auto-
matically result in distinct log4j-logging universes. Simply put, each web-application
will load its own distinct copy of log4j classes into memory. All such copies are in-
visible and inaccessible to each other.

This solution is not too complicated to set up but has drawbacks:

• Multiple copies of log4j.jar take more disk and memory space. On today's com-
puters with huge disk spaces and memory, the waste of a few hundred kilobytes is
hardly a serious issue.

THE WIDER CONTEXT 155

• The Java class loader delegation model gives precedence to parent class loaders.
This means that if log4j.jar is available on the CLASSPATH, or under
JAVA_HOME/jar/lib/ext or to any class loader which is a parent of the web-
application's class loader, then that copy of log4j will be loaded into memory and
shared by all web-applications.

The class loader approach is brittle: its success depends on external factors. If
your environment is not setup properly then the solution won't work. If the con-
tainer itself uses log4j and makes it visible to web-applications, it won't work. In
general, solutions depending on class loader tricks don't very work well. They are
complicated and fragile. Most Java developers, even experienced ones, do not un-
derstand class loaders. Dealing with class loader related problems requires that
the developer understands class loaders as well as the class loader hierarchy of the
particular container she is using. Different containers exhibit different class load-
ing behaviors. In some cases, different versions of the same container behave dif-
ferently.

• Assuming you are lucky and you successfully setup different log4j-logging envi-
ronment for each web-application, then since every copy of the log4j classes are
invisible to each other, they will also be invisible to any management entity. In
other words, it will be impossible to manage the different log4j instances from a
single management console.

Second solution

Log4j allows different applications live in their own parallel universe by using a dif-
ferent LoggerRepository for each application. The main methods in the Logger-
Repository interface are listed below.

package org.apache.log4j.spi;

public interface LoggerRepository {

 // Returns an enumeration of the currently existing loggers
 Enumeration getCurrentLoggers();

 // Create a new logger with the given name
 Logger getLogger(String name);

 // Create a new logger with the given name, delegate actual
 // creation to a LoggerFactory.
 Logger getLogger(String name, LoggerFactory factory)

 // Get the root logger

156 CHAPTER 8: EXTENDING LOG4J

 Logger getRootLogger();

 // Get the repository-wide threshold
 Level getThreshold()

 // Is the respository disabled for a given level?
 boolean isDisabled(int level)

 // Reset the configuration of existing loggers. This does not
 // remove them.
 void resetConfiguration();

 // Set the repository-wide threshold.
 void setThreshold(Level level)

}

The Hierarchy class implements the LoggerRepository interface which arranges
loggers in a tree according to their name. Log4j delegates the creation of loggers to a
default Hierarchy object. However, developers are free to maintain and use their
own hierarchy. Given that each hierarchy (or logger repository) manages its own
separate logger tree, logging separation is a byproduct of this approach.

The Java Servlet API mandates a unique ServletContext for each web-
application. Thus, a web-application can set an attribute for the servlet context which
can be shared by all servlets and jsp pages of the web-application but invisible to
other web-applications. In particular, an initialization servlet can create and set a log-
ger hierarchy in the servlet context and configure it separately of other hierarchies.
Later on, other servlets can retrieve the hierarchy stored in the servlet context in or-
der to obtain logger instances. These logger instances will be attached to the particu-
lar hierarchy of the web-application.

Under the examples/chapter8/multipleHiearchies you shall find two web-
applications, namely Hello and Tata, that employ the technique just described. These
web-applications show how to use and configure distinct logger hierarchies such that
each web-application lives in its own independent logging universe. You will find
deployment-ready war files hello.war and tata.war in the respective directories of
each web-application.. After deployment, you can access them as

 http://hostname:port/hello/hello.html

 http://hostname:port/tata/index.html

You should see log output appearing in the file /hello.log for the Hello web-
application and under /tata.log for the Tata web-application as each web-application

THE WIDER CONTEXT 157

uses its own distinct logger hierarchy. Both applications have been tested under
Tomcat 3.2.1, Tomcat 4.0.3 and Tomcat 4.1.12 but should work on any Servlet Con-
tainer compatible with the Servlet 2.2 specification or later.

The two web-applications are extremely similar and differ almost exclusively by
their name. Consequently, we will only list the salient parts of only the Hello web-
application.

Example 8-6: An initialization servlet (examples/chapter8/multipleHierarchies/Hello/-
src/java/wombat/Log4jInit.java)

package wombat;

import org.apache.log4j.*;
import org.apache.log4j.spi.RootCategory;
import javax.servlet.http.*;
import javax.servlet.*;

public class Log4jInit extends HttpServlet {

 public void init() {
 ServletContext context =
 getServletConfig().getServletContext();

 Hierarchy hierarchy =
 new Hierarchy(new RootCategory(Level.DEBUG));

 context.setAttribute("hierarchy", hierarchy);

 String prefix = getServletContext().getRealPath("/");
 String file = getInitParameter("log4j-init-file");
 // if the log4j-init-file is not set, then no point
 // in trying
 if(file != null) {
 new PropertyConfigurator().doConfigure(prefix+file,
 hierarchy);
 Logger logger =
 hierarchy.getLogger(Log4jInit.class.getName());
 logger.info("Logging initialized for Hello.");
 }
 }

 public void doGet(HttpServletRequest req,
 HttpServletResponse res) {
 // nothing to do
 }
}

158 CHAPTER 8: EXTENDING LOG4J

To create a new Hierarchy, it is enough to invoke its constructor by passing it a new
RootCategory as argument. After creating a new hierarchy instance, the init()
method configures it using a PropertyConfigurator. The doConfigure meth-
ods of all configurators admit a LoggerRepository as an argument, such that the
instructions given within a configuration files apply to the supplied LoggerReposi-
tory instance. Here is the relevant code from Log4jInit.

 String prefix = getServletContext().getRealPath("/");
 String file = getInitParameter("log4j-init-file");
 // if the log4j-init-file is not set, then no point
 // in trying
 if(file != null) {
 new PropertyConfigurator().doConfigure(prefix+file,
 hierarchy);
 Logger logger =
 hierarchy.getLogger(Log4jInit.class.getName());
 logger.info("Logging initialized for Hello.");
 }

The log4j-init-file parameter is defined within the web.xml file of the web-
application. Subsequently loaded servlets or JSP pages simply retrieve the hierarchy
instance from the servlet context and use that to obtain the loggers they need, as illus-
trated by the HelloServlet example.

Example 8-7: An simple servlet using the hierarchy defined by Log4jInit (exam-
ples/chapter8/multipleHierarchies/Hello/src/java/wombat/HelloServlet.java)

package wombat;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import org.apache.log4j.*;

public class HelloServlet extends HttpServlet {

 private Logger logger; // instance variable

 public void init() throws ServletException {
 ServletContext context =

 getServletConfig().getServletContext();

 Hierarchy hierarchy =

 (Hierarchy) context.getAttribute("hierarchy");

THE WIDER CONTEXT 159

 if(hierarchy == null) {
 context.log("The Hello web-application is not properly "
 + "intialized.");
 } else {
 logger = hierarchy.getLogger(HelloServlet.class.getName());
 }
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)

 throws ServletException, IOException {

 String name = request.getParameter("name");

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 if(logger!=null) {
 // if defined, use the logger as any other logger
 logger.info("About to say hello to "+name);
 }
 out.println("<HTML><BODY>");
 out.println("<H2> Hello " + name + ". How are you?</H2>");
 out.println("</BODY></HTML>");
 out.close();
 }
}

Note that the hierarchy is obtained once and for all within the init() method of the
servlet. The servlet container calls the init() method exactly once after instantiat-
ing the servlet to indicate that it is being placed into service.

Using multiple hierarchies works well with code that is designed to use them. How-
ever, it does not compose well with a library which uses log4j but is unaware of mul-
tiple hierarchies. In log4j 1.2, a powerful yet transparent API was introduced to man-
age logger creation and retrieval.

Third solution

In a nutshell, the third solution relies on the Servlet Container to keep track of the
execution context and provide a different logging environment for each context. Put
differently, the Servlet Container provides a separate hierarchy instance for each
web-application. Each logger object that log4j creates is attached to a hierarchy. The
Hierarchy class implements the LoggerRepository interface by arranging log-
ger objects in a tree according to their name.

160 CHAPTER 8: EXTENDING LOG4J

The Logger.getLogger() method is actually implemented as follows:

 static public Logger getLogger(String name) {
 return LogManager.getLogger(name);
 }

In other words, the Logger class simply calls the class static getLogger method in
the LogManager class. The LogManager class acts as a facade to a sub-system that
retrieves Logger instances of varying types held in context-dependent repositories.
From the user’s perspective, the LogManager allows us to vary Logger implemen-
tation depending on the circumstances. Moreover, it controls the logging repository
(i.e. hierarchy) where loggers are held depending on the application context. The be-
havior of LogManager is determined by the RepositorySelector it uses.

The LogManager.getLogger() method is implemented as follows:

public static Logger getLogger(String name) {
 // Delegate the actual manufacturing of the logger to
 // the logger repository.
 return repositorySelector.getLoggerRepository().getLogger(name);
}

The repositorySelector variable is a private class static variable of type Re-
positorySelector. The RepositorySelector interface contains only one
method: getLoggerRepository. The RepositorySelector interface is repro-
duced (in its entirety) below:

 package org.apache.log4j.spi;

 public interface RepositorySelector {
 public LoggerRepository getLoggerRepository();
 }

By default, the class static repositorySelector variable of the LogManager class is set
to a trivial RepositorySelector implementation which always returns the same
logger repository implemented as a Hierarchy. This object is referred to as the de-
fault hierarchy. What a coincidence, no?

The LogManager class has a setter method, namely the setRepositorySelec-
tor() method, which can cause the LogManager class to use a different Reposi-
torySelector implementation. A top-level application such as a Servlet Container
or an Application Server can set a RepositorySelector which can track applica-
tion contexts and return the appropriate logger repository. The actual algorithm for

THE WIDER CONTEXT 161

tracking application context is the responsibility of the RepositorySelector
implementation.

Let us implement a context sensitive repository selector. Let us call it CRS, for Con-
textual Repository Selector. CRS, or Contextual Repository Selector, is such that
depending on the current execution context, it returns a different LoggerReposi-
tory instance. But since the getLoggerRepository() method takes no parame-
ters how can it know the current execution context? The answer to this question de-
pends on the Servlet Container. In Apache Tomcat for example, each web-
application has its own class loader and Tomcat sets the Thread Context Classloader,
or TCL, to be the class loader of the currently executing web-application.

Under this assumption our CRS can return a Hierarchy instance depending on the
TCL. Below is a possible implementation of the CRS specifically designed for Tom-
cat.

Example 8-8: Contextual Repository Selector or CRS (examples/chapter8/CRS.java)

package org.apache.tomcat.wombat;

import org.apache.log4j.spi.RepositorySelector;
import org.apache.log4j.spi.LoggerRepository;
import org.apache.log4j.spi.RootCategory;
import org.apache.log4j.Hierarchy;
import org.apache.log4j.Level;
import java.util.Hashtable;

public class CRS implements RepositorySelector {

 // key: current thread's ContextClassLoader,
 // value: Hierarchy instance
 private Hashtable ht;

 public CRS() {
 ht = new Hashtable();
 }

 // the returned value is guaranteed to be non-null
 public LoggerRepository getLoggerRepository() {
 ClassLoader cl = Thread.currentThread().getContextClassLoader();
 Hierarchy hierarchy = (Hierarchy) ht.get(cl);

 if(hierarchy == null) {
 hierarchy = new Hierarchy(new RootCategory(Level.DEBUG));
 ht.put(cl, hierarchy);
 }

162 CHAPTER 8: EXTENDING LOG4J

 return hierarchy;
 }

 /**
 * The Container should remove the entry when the
 * web-application is removed or restarted.
 */
 public void remove(ClassLoader cl) {
 ht.remove(cl);
 }
}

The Servlet Container will set the repository selector to a CRS instance when it starts
up. This is as simple as calling:

 Object guard = new Object();
 LogManager.setRepositorySelector(new CRS(), guard);

Thereafter, the repository selector can only be changed by supplying the guard.
Those who do not know it cannot change the repository selector. Note that the CRS
implementation is container specific; it is part of the container, not log4j.

One advantage of the third solution is that log4j users will continue to call Log-
ger.getLogger method in their code as usual, but their web-applications will use
different hierarchy instances, which effectively achieves separation of logging per
web-application. It does not matter if log4j.jar file is on the CLASSPATH, in
JAVA_HOME/jre/lib/ext/ or in the Container's “common” class loader. Moreover,
web-applications will no longer need to add log4j.jar to their WEB-INF/lib directory.

There is another extremely important advantage. By controlling the logger repository
the Servlet Container can also safely control the Logger implementation returned by
the repository. The particular Logger implementation returned by each LoggerRe-
pository may possess different characteristics. It can

• impose stricter security, for example based on the JDK 1.2 security model,

• return a NullLogger implementation in case logging is disabled for a given web-
application,

• transparently interact with the web-application's Container specific logging set-
tings.

These implementations result respectively in higher security, better performance and
better control.

BETWEEN LOG4J VERSION 1.1.X AND 1.2 163

9.Changes

Change is not made without inconvenience, even
from worse to better.

Richard Hooker

Between log4j version 1.1.x and 1.2
Log4j version 1.2 introduced many changes. In most cases, it can be considered as a
drop in replacement for log4j version 1.1.x. This section discusses the changes and
backward compatibility issues.

Logger replaces Category
The most important change in 1.2 is the replacement of the Category class with the
Logger class. To preserve backward compatibility, the Logger class extends the
Category class such that it is always possible to use a logger object where a cate-
gory object is expected. In addition, whenever log4j is asked to produce a Category
object, it will instead produce a Logger object. Log4j version1.2 will never produce
pure Category objects. Methods that previously accepted Category objects will
continue to accept them.

For example, the following are all legal and will work as expected.

 // Deprecated forms:
 Category cat = Category.getInstance("foo.bar")
 Logger logger = Logger.getInstance("foo.bar")
 Category cat = Logger.getLogger("foo.bar")

 // Preferred form for retrieving loggers:
 Logger logger = Logger.getLogger("foo.bar")

There is absolutely no need for new client code to use or refer to the Category class
in newly written code. Please avoid referring to it or using it. It is important to note

164 CHAPTER 9: CHANGES

that the introduction of the Logger class is backward compatible. You can still use
the older Category class in your existing code; just avoid it in freshly written code.

You may contend that having Logger extend Category is unintuitive – in particular
because the Logger class is almost empty and relies entirely on the Category class
for its implementation. Don't be fooled by the appearances. The Category class will
eventually be removed and most of its contents transferred to Logger.

Compatibility issues with Category sub-classes
For most users the introduction of the Logger class is fully backward compatible.
However, if you have sub-classed the Category class, then you need to heed the
following points.

• Sub-classes of Category must extend org.apache.log4j.Logger and
not org.apache.log4j.Category.

• The org.apache.log4j.spi.CategoryFactory class has been re-
moved. It has been replaced with the org.apache.log4j.spi.Logger-
Factory class. Thus, your subclass' factory must be of type LoggerFac-
tory.

• The Category.getInstance(String, CategoryFactory) method
has been removed. You need to invoke the LogMan-
ager.getLogger(String, LoggerFactory) method to create loggers
of your subclass type.

• In configuration scripts parsed by PropertyConfigurator the
log4j.categoryFactory keyword has been replaced with
log4j.loggerFactory.

We strongly recommend against sub-classing Logger or Category classes to intro-
duce new printing methods, you can use the general purpose log method instead.

Level replaces Priority
In a very similar fashion, the Priority class has been replaced by the Level class.
Level extends Priority. Whenever log4j is asked to produce a Priority object,
it will instead produce a Level object. The constants Priority.FATAL, Prior-
ity.ERROR, Priority.WARN, Priority.INFO, Priority.DEBUG are now of
type Level. However, this should be completely transparent to all log4j users.

LEVEL REPLACES PRIORITY 165

The Priority.getPriority() family of methods returning Priority, have
been replaced with the Priority.getLevel() family of methods returning a
Level instance.

LogManager, RepositorySelector and LoggerRepository classes

In log4j 1.2, we introduced a powerful API to manage the creation and retrieval of
Loggers depending on application context. See Chapter 8 further details.

Hierarchy wide enabling/disabling

In the Hierarchy class the disable family of methods have been removed and re-
placed by setThreshold and getThreshold methods. This change is not back-
ward compatible.

10.Frequently Asked Questions

Only reason can convince us of those three fundamental
truths without a recognition of which there can be no ef-
fective liberty: that what we believe is not necessarily
true; that what we like is not necessarily good; and that
all questions are open.

Clive Bell, Civilization

Why do salmon die so soon after spawning?
Robert M. Sapolsky, Why Zebras don’t get ulcers

Q 10.1 What are the installation requirements for log4j?

Log4j is JDK 1.1 compatible. However, several components may require packages
that ship with Java 2 such as JNDI, Swing or JMX

Q 10.2 Is log4j thread safe?

Yes, log4j can be safely used in a multi-threaded application. In particular, when
multiple threads call the same appender, their requests are synchronized within the
doAppend method of AppenderSkeleton which is the super-class of all appenders
in log4j. Other parts of log4j employ the appropriate concurrency primitives to en-
sure thread safety.

Q 10.3 Can multiple Java Virtual Machines log to the same file using log4j?

No, there is no way for log4j to coordinate the access for a system resource, for ex-
ample a file, between multiple JVMs. This restriction originates in the standard Java
I/O libraries. Ignoring it is likely to result in garbled or even a completely corrupt log
file.

Q 10.4 Can multiple appenders running in the same JVM log to the same file?

LEVEL REPLACES PRIORITY 167

The answer is no. For performance and other technical reasons, log4j does not per-
form any synchronization between appenders. Having multiple appenders in the
same JVM logging to the same file is not much different from having multiple ap-
penders in different JVMs logging to the same file. See also the answer to the preced-
ing question.

Q 10.5 How is log4j different from the java.util.logging API introduced in
JDK 1.4?

The two APIs are very similar. As a result of our campaign to influence and improve
the JSR47 API, the final version of JSR47 resembles log4j very closely.

There are two critical differences between the APIs. First, JSR47 requires JDK 1.4
whereas log4j is compatible with JDK 1.1 and later. Second, log4j offers much more
functionality. It supports a rich configuration language, at least a dozen appenders
and layouts as well as many other useful features.

Q 10.6 Does java.util.logging API threaten the future of log4j?

No, it does not. Log4j enjoys a very large user community that continues to grow
vigorously. The expectation is for the log4j developers to continue to innovate and
further widen the gap that exists between log4j and java.util.logging API.
Moreover, as an open source project, log4j has a track record of quickly fixing bugs
and reacting to demands of the user community.

Q 10.7 Why was the Category class renamed as Logger and the Priority class
to Level?

The renaming was done essentially because that is how JSR47 names things. It is
beneficial to adopt JSR47 terminology because all those who know the
java.util.logging package will quickly feel equally at home with log4j. More-
over, the change makes it easy for users to switch from log4j to
java.util.logging and hopefully, more often than not, the other way around.

Q 10.8 How to log to different files based on level?

Setting the Threshold property of any appender extending AppenderSkeleton (all
log4j appenders extend this class) will filter out all log requests with a level lower
than the value of the threshold property.

Refer to section "Setting the threshold of an Appender" on page 41 and the section
entitled "Setting the threshold of an Appender (XML)" on page 57 for further
information on this topic.

168 CHAPTER 10: FREQUENTLY ASKED QUESTIONS

Q 10.9 What guarantees are there (if any) for binary compatibility between different
versions of log4j?

This is a deep and tough question. The problem of binary compatibility is intrinsic to
the nature of software development. Unlike in other engineering endeavors, software
can be easily modified or enhanced. This apparent ease of change makes it very easy
to break compatibility with previous versions of the software.

For a widely used library like log4j, the question of binary compatibility is singularly
acute. It is not uncommon to see an application composed of several libraries each of
which depends on log4j for its logging. If any two of these libraries depend on in-
compatible versions of log4j, the application may not run smoothly. In a library of
the size and breadth of log4j, it is exceedingly difficult to preserve 100% backward
compatibility between the oldest and newest versions. Nevertheless, changes that
break binary compatibility are few and very limited in scope such that the number of
affected users is minimal. One notable exception is the deprecation of the Category
class. If you read between the lines, the javadocs promise that the Category class
will be kept around until mid-2003. This does not necessarily mean that it will be
removed after that date…

Our current policy forbids the removal of a deprecated field, method or class before
the completion of two release cycles. In other words, a method deprecated in log4j
1.2 cannot be removed until version 1.5 is officially released, leaving library devel-
opers over two years to adapt to changes in log4j. This policy applies to log4j ver-
sion 1.2 and later. In earlier versions, the completion of only one release cycle was
required for the removal of a deprecated method.

Q 10.10 What are the configurable options for WombatAppender?

Log4j employs JavaBeans introspection to dynamically infer the options of a compo-
nent. Any setter method admitting a single parameter that is a Java language primi-
tive type (e.g. int, long), or any of the corresponding wrapper classes (e.g. Integer,
Long), a String, or a org.apache.log4j.Level corresponds to an option. For
example, given that the FileAppender class contains setAppend(boolean),
setBufferSize(int) and setFile(String) as member methods, then it fol-
lows that Append, BufferSize and File are all valid option names. Log4j can also
deal with setter methods taking a parameter of type org.apache.log4j.Level.
For example, since the AppenderSkeleton class has setThreshold(Level) as a
member method, Threshold is a valid option for all log4j appenders extending Ap-
penderSkeleton. Thus, although WombatAppender may not have an official list
of its options, it is easy to discover them by looking at the setter methods present in
the WombatAppender class and its super-classes.

LEVEL REPLACES PRIORITY 169

Q 10.11 It is oft-repeated that that subclassing of Logger class is strongly discour-
aged. Why is that?

 The actual implementation of the Logger class in use depends on the LoggerRe-
pository in use in a given context as determined by the RepositorySelector.
For example, it is entirely possible for two web-applications to use different logger
repositories (hierarchies) that return different Logger implementations in response
to the invocation of their getLogger() method. The ability to impose the Logger
implementation is the reserved privilege of Servlet container or EJB container devel-
opers, not casual users. Ignoring this restriction is likely to cause trouble in future
versions of J2EE containers that closely integrate with log4j. For more details on the
RepositorySelector see the section entitled “The Wider Picture” in Chapter 8.

Q 10.12 What is the correct capitalization for log4j?

Log4j should be spelled in all lower case, as in log4j, except if it occurs as the first
word in a sentence, like in this sentence.

 Q 10.13 Why on earth is there bird on the cover of this book?

The cover of this book pictures Dave or more formally NGMC 91, a dromaeosaur
fossil discovered by a farmer in China's Liaoning Province in the winder of 2000.
According to specialists, Dave was a young dromaeosaur specimen covered with
feathers. Its discovery added considerable weight to the theory that birds are the liv-
ing descendants of dinosaurs. Mark Norell narrates the captivating story of Dave in
his article “The Proof Is in the Plumage” which is available online at:

 http://www.amnh.org/naturalhistory/0701/0701_feature.html

By studying fossils scientists make fascinating discoveries on the evolution of life on
our planet. In a similar vein, by studying log traces developers can test various hy-
potheses for application failures and identify problems–even long after the applica-
tion ceases to run. Enamored with the analogy between fossils and log traces, I
started hunting for an attractive fossil illustration. My search stopped as soon as I
bumped into Mick Ellison’s drawing which is reproduced herein with permission.

170 CHAPTER 11: TROUBLE SHOOTING GUIDE

11.Trouble Shooting Guide

London Bridge is broken down,
Broken down, broken down,

London Bridge is broken down,
My fair lady.
Henry Carey

This chapter contains a list of commonly encountered problems when using log4j.
Before reporting bugs make sure that you have made an honest effort to study exist-
ing documentation. Please also see Eric S. Raymond's essay on asking questions the
smart way. The URL for the essay is http://www.tuxedo.org/~esr/faqs/smart-
questions.html

T 11-1 Log4j tells me to initialize properly.

Logging output is written to a target by using an appender. If no appenders are at-
tached to a logger or to any of its ancestors, you will get the following message at the
first logging attempt:

log4j:WARN No appenders could be found for logger (some.logger.name).
log4j:WARN Please initialize the log4j system properly.

Log4j does not have a default logging target. It is the user's responsibility to ensure
that all loggers can inherit an appender. This can be easily achieved by attaching an
appender to the root logger.

T 11-2 Duplicates in log4j output.

The reason for observing duplicates in log4j output is either due to having added the
same appender multiple times to the same logger, typically to the root logger or hav-

LEVEL REPLACES PRIORITY 171

ing added the same appender to different logger ignoring the fact that appenders are
inherited cumulatively.

Log4j does not eliminate appender duplicates. In other words, if you add the same
appender to a logger n times, that appender will be invoked n times to append to its
target.

A slightly different cause of trouble is adding different appenders all sharing the
same underlying output target to some logger. In the most common occurrence of
this phenomenon, the BasicConfigurator.configure() method is invoked multiple
times. Each time it is invoked, this method adds an appender with a System.out target
to the root logger.

One other common mistake is to forget that appenders are inherited cumulatively
from the hierarchy. For example, if you add an appender, say A, to the root logger,
all other categories will inherit A as an appender. Thus, if you add A to a logger, say
L, then an enabled statement of logger L, will print to A twice, once because A is in
root and once because it is in L.

T 11-3 Deadlocks occurring after the introduction of log statements into an appli-
cation.

On numerous occasions users have complained about deadlocks after introducing log
statements into their code. However, without exception the bug was always in the
application code not in log4j. This is not to say that log4j is totally bug-free but you
need to provide some proof before accusing log4j and jumping to conclusions.

In the typical case, the introduction of logging statements reveals existing concur-
rency problems because log statements add delay which may change the order of
execution among threads, causing an existing concurrency problem to come to sur-
face.

T 11-4 Caller location information is printed as a "?" character.

Location information is extracted automatically by the PatternLayout conversion pat-
terns %C, %F, %M and %L. However, some just-in-time (JIT) compilers make it
impossible to extract location information. It is also possible that the compiler that
generated the byte code may have omitted the LineNumber table as is done by -O
option of javac and jikes.

You can remedy this problem by disabling the JIT compiler and by compiling the
code without the -O option.

172 CHAPTER 11: TROUBLE SHOOTING GUIDE

Wrappers or subclasses of Logger constitute a special case.

Wrappers or subclasses of Logger need supply their fully qualified class name to the
Logger.log method or to Logger.forcedLog methods so that the caller location infor-
mation can be extracted correctly.

This approach will work correctly in all cases except if the class invoking the ex-
tended logger instance has the same prefix as the extended logger class. For example,
calling an instance of com.foo.BarLogger from the com.foo.BarLoggerTest
class will not yield the correct caller information. To circumvent this "bug", either
perform the tests from a class with a different name or add a dot to the fully qualified
name of the extending class that you supply to Logger.log or Log-
ger.forcedLog methods. For the com.foo.BarLogger example, supply the
string "com.foo.BarLogger.".

T 11-5 log4j:ERROR A "XYZAppender" object is not assignable to a
"org.apache.log4j.Appender" variable.

This error occurs when log4j classes are loaded into memory by two distinct class
loaders. According to section 4.3.4 of the Java Language Specification, when the
same class is loaded by different class loaders, the resulting runtime copies are con-
sidered incompatible.

While processing configuration scripts, log4j configurators often load classes into
memory. Log4j is programmed such that configurators will first attempt load a re-
quired class using the thread context class loader (TCL) and if that fails, it will at-
tempt to load the class using the current23 class loader. Thus, log4j configurators will
fail to load appenders or other log4j components when the thread context class loader
has a different copy of log4j classes than the copy loaded by the current class loader.
For example, assuming class loaders A and B both load a copy of log4j classes and
the TCL is set to point to B, then invoking the configure method of a DOMCon-
figurator instance loaded by class loader A will cause an error. Indeed, the
method responsible for loading the appender into memory will check that the class of
the appender is assignable to org.apache.log4j.Appender. The check is done
against the org.apache.log4j.Appender class loaded by A but since log4j gives
preference to loading classes through the thread context class loader, B in this case,
the Java runtime will consider the new appender (loaded by B) incompatible with the
copy of org.apache.log4j.Appender class loaded by A.

23 The current class loader is defined to be the class loader that loaded the currently
executing object.

LEVEL REPLACES PRIORITY 173

To get around this problem it suffices to make sure that only one and only one copy
of log4j.jar is available to the class loader hierarchy of your application. This is not
always possible because certain servlet containers and EJB containers use log4j in-
ternally for their own logging. These containers usually ship with a copy of log4j.jar
which is visible by certain parts of their class loader hierarchy. However, when users
deploy log4j.jar within their web-applications or ear files, depending on the delega-
tion model of the application-specific class loaders as well as the TCL settings, con-
flicts can arise. Tracking these conflicts requires good understanding of the class
loader hierarchy of the container as well as precise details about the deployment of
jar files at user premises. It is not always possible to obtain accurate and timely in-
formation on these matters.

When all attempts to resolve the aforementioned problem fail despite your best ef-
forts, then you can set the “log4j.ignoreTCL” system property as a last ditch solution.
When this system property is set to any value other than “false,” log4j’s class loading
algorithm will ignore the value of the thread context loader and will only use the cur-
rent class loader in order to locate and load classes. Note that the “log4j.ignoreTCL”
property is only available in log4j version 1.2.6 and later. It is a system property that
cannot be specified within configuration files.

T 11-6 ClassCastException when instantiating Logger sub-classes.

This exception is thrown because log4j does not support homonyms. For example,
the following will systematically throw a ClassCastException

 Logger c1 = Logger.getLogger("bad");
 MyLogger c2 = (MyLogger) MyLogger.getLogger("bad");

where MyLogger is a subclass of Logger. The problem occurs because the second
getLogger invocation will retrieve the Logger created in the fist invocation. This
instance is a Logger object and cannot be cast as MyLogger. Chapter 8 discusses the
requirements for sub-classing the Logger class.

T 11-7 log4j:WARN No such property [xyz] in some appender or layout

If during log4j configuration you get a warning about an nonexistent property, then
you have probably misspelled a property or entered a truly unrecognized property for
the component you are trying to configure.

Log4j version 1.0 did not complain about unrecognized properties whereas log4j ver-
sion 1.1 and later do complain.

T 11-8 I cannot log to syslogd under linux.

174 CHAPTER 11: TROUBLE SHOOTING GUIDE

If you are trying to log to the Unix syslog under Linux using the SyslogAppender,
then the Linux syslog daemon must be configured to accept log input from the net-
work. Otherwise, you will get an IOException: connection refused.

This can be done by adding the -r option when starting the daemon. Or more pre-
cisely:

• Login as the root user

• Edit file /etc/rc/init.d/syslog

 case "$1" in
 start)
 echo -n "Starting system logger: "
 daemon syslogd -r

12.Apache Software License
This manual constitutes a separate body of work and is copyrighted by Ceki Gülcü
and licensed to you under the terms of the license found at the beginning of this
book. Nevertheless, given that it contains a small number of verbatim excerpts of
log4j source code as well as parts of its documentation, the terms of the Apache
Software License demand that this fact be acknowledged by reproducing the terms of
the Apache Software License. Here it is.

/*
 * ==
 * The Apache Software License, Version 1.1
 * ==
 *
 * Copyright (C) 1999 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following
 * conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following
 * disclaimer in the documentation and/or other materials provided
 * with the distribution.
 *
 * 3. The end-user documentation included with the redistribution, if
 * any, must include the following acknowledgment: "This product
 * includes software developed by the Apache Software Foundation
 * (http://www.apache.org/)." Alternately, this acknowledgment may
 * appear in the software itself, if and wherever such third-party
 * acknowledgments normally appear.
 *
 * 4. The names "log4j" and "Apache Software Foundation" must not be
 * used to endorse or promote products derived from this software
 * without prior written permission. For written permission, please
 * contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS

 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 *
 */

Moreover, per Article 4 of the Apache Software license, this work uses the name
“log4j” with written permission from the Apache Software Foundation.

13.Glossary
Custom level

A level defined by the user.

Location Information
The term “location information” designates the line number, file name and class
name of the caller making the log request. When possible, this information is auto-
matically extracted by log4j.

Logger Printing Methods

The logger printing methods are debug(), info(), warn(), error(), fatal()
and log() methods as defined in the Logger class.

java.util.logging API (JSR47)

The logging API introduced in JDK 1.4. It is the result of the JSR47 effort. See
http://jcp.org/aboutJava/communityprocess/review/jsr047/index.html for more de-
tails.

Java System Property

Any of the string values available through the getProperty/setProperty meth-
ods in java.lang.System. You can set your java system properties with the -D
option of the java tool, i.e. the launcher for Java technology applications.

For example,
java -Dlog4j.debug=true com.gopher.bar

will set the log4j.debug system property to true when launching the com.gopher.bar
java application.

14.Index

A
Additivity, 16
Appender, 16–19, 65–81

additivity, 16
AppenderSkeleton, 66–68
WriterAppender, 68–71

E
Effective level, 11

H
Hierarchy-wide Threshold Filter

definition, 14

L
Level

Effective Level. See Effective Level
Logger class, 7

frequently used methods, 7

N
named hierarchy rule, 7, 37

O
ObjectRendering, 19
Options

dynamic discovery in XML files, 47
dynamic discovery of component options,

33, 68, 117

R
Root logger, 7

properties of, 7

X
XML configuration file, 43

setting the level of a logger, 52
syntax of, 45

